Static Program Analysis

Seidl/Wilhelm/Hack: Compiler Design – Analysis and Transformation, Springer Verlag, 2012

A Short History of Static Program Analysis

- Early high-level programming languages were implemented on very small and very slow machines.
- Compilers needed to generate executables that were extremely efficient in space and time.
- Compiler writers invented efficiency-increasing program transformations, wrongly called optimizing transformations.
- Transformations must not change the semantics of programs.
- Enabling conditions guaranteed semantics preservation.
- Enabling conditions were checked by static analysis of programs.

Theoretical Foundations of Static Program Analysis

- Theoretical foundations for the solution of recursive equations: Kleene (1930s), Tarski (1955)
- Gary Kildall (1972) clarified the lattice-theoretic foundation of data-flow analysis.
- Patrick Cousot (1974) established the relation to the programming-language semantics.

Static Program Analysis as a Verification Method

- Automatic method to derive invariants about program behavior, answers questions about program behavior:
 - will index always be within bounds at program point p?
 - will memory access at p always hit the cache?
- answers of sound static analysis are correct, but approximate: don't know is a valid answer!
- analyses proved correct wrt. language semantics,

Proposed Lectures Content:

- 1. Introductory example: rules-of-sign analysis
- 2. theoretical foundations: lattices
- 3. an operational semantics of the language
- 4. another example: constant propagation
- 5. relating the semantics to the analysis—correctness proofs
- 6. some further static analyses in compilers: Elimination of superfluous computations
 - \rightarrow available expressions
 - \rightarrow live variables
 - \rightarrow array-bounds checks

1 Introduction

... in this course and in the Seidl/Wilhelm/Hack book:

a simple imperative programming language with:

- variables // registers
- R = e; // assignments
- R = M[e]; // loads
- $M[e_1] = e_2;$ // stores
- if (e) s_1 else s_2 // conditional branching
- goto L; // no loops

Intermediate language into which (almost) everything can be compiled. However, no procedures. So, only intra-procedural analyses!

2 Example: Rules-of-Sign Analysis

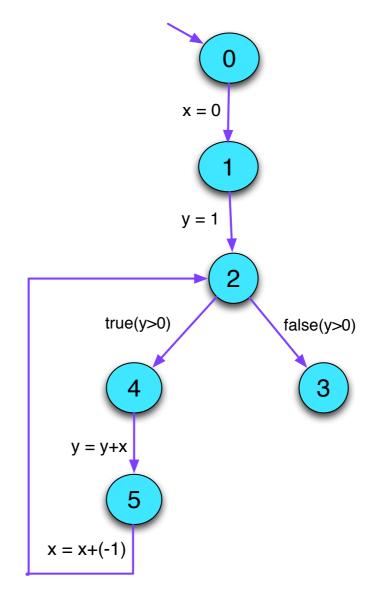
Starting Point: Questions about a program, mostly at a particular program point:

- May variable x have value 0 when program execution reaches this program point? \longrightarrow Attempt to exclude division by 0.
- May x have a negative value? \longrightarrow Attempt to exclude sqrt of a negative number.

Solution: Determine at each program point the sign of the values of all variables of numeric type.

Determines a sound, but maybe approximate answer.

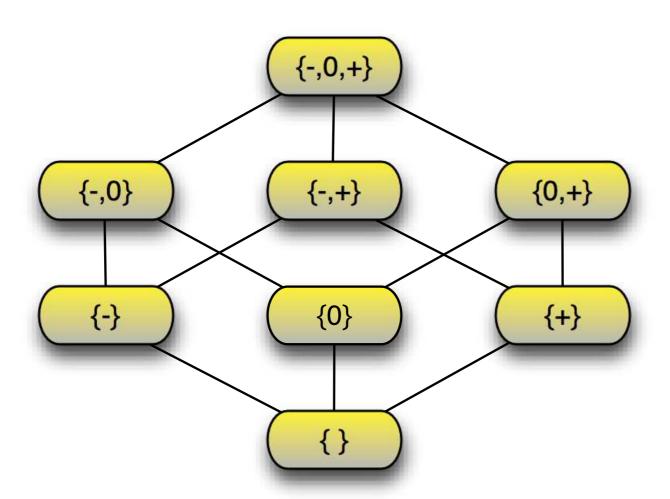
Example program represented as *control-flow graph*



All the ingredients:

- a set of information elements, each a set of possible signs,
- a partial order, "⊑", on these elements, specifying the "relative strength" of two information elements,
- these together form the abstract domain, a lattice,
- functions describing how signs of variables change by the execution of a statement, abstract edge effects,
- these need an abstract arithmetic, an arithmetic on signs.

We construct the abstract domain for single variables starting with the lattice $Signs = 2^{\{-,0,+\}}$ with the relation " \sqsubseteq " =" \subseteq ".



The analysis should "bind" program variables to elements in Signs.

So, the abstract domain is $\mathbb{D} = (Vars \rightarrow Signs)_{\perp}$, a Sign-environment.

 $\perp \in \mathbb{D}$ is the function mapping all arguments to $\{\}$.

The partial order on \mathbb{D} is $D_1 \sqsubseteq D_2$ iff

$$D_1 = \bot$$
 or

$$D_1 x \supseteq D_2 x \quad (x \in Vars)$$

Intuition?

The analysis should "bind" program variables to elements in Signs.

So, the abstract domain is $\mathbb{D} = (Vars \rightarrow Signs)_{\perp}$. a Sign-environment.

 $\perp \in \mathbb{D}$ is the function mapping all arguments to $\{\}$.

The partial order on \mathbb{D} is $D_1 \sqsubseteq D_2$ iff

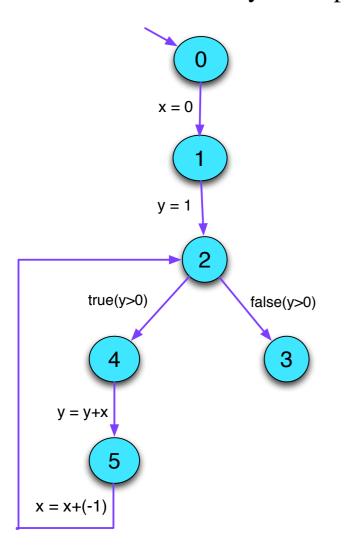
$$D_1 = \bot$$
 or

$$D_1 x \supseteq D_2 x \quad (x \in Vars)$$

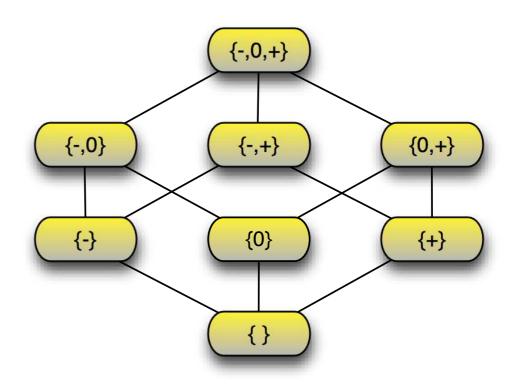
Intuition?

 D_1 is at least as precise as D_2 since D_2 admits at least as many signs as D_1

How did we analyze the program?

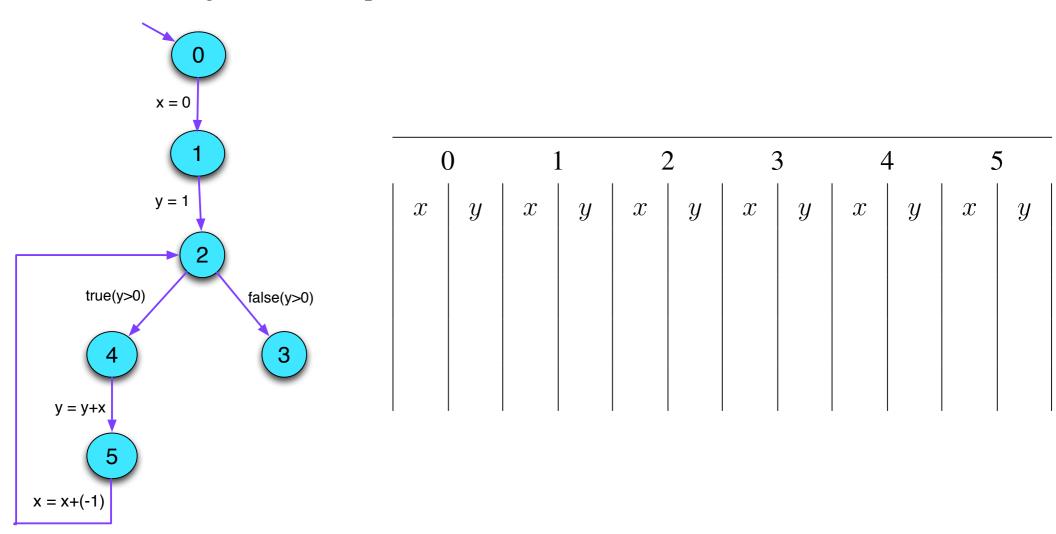


In particular, how did we walk the lattice for *y* at program point 5?



How is a solution found?

Iterating until a fixed-point is reached



• We want to determine the sign of the values of expressions.

- We want to determine the sign of the values of expressions.
- For some sub-expressions, the analysis may yield $\{+, -, 0\}$, which means, it couldn't find out.

- We want to determine the signs of the values of expressions.
- For some sub-expressions, the analysis may yield $\{+, -, 0\}$, which means, it couldn't find out.
- We replace the concrete operators \square working on values by abstract operators \square^{\sharp} working on signs:

- We want to determine the signs of the values of expressions.
- For some sub-expressions, the analysis may yield $\{+, -, 0\}$, which means, it couldn't find out.
- We replace the concrete operators \square working on values by abstract operators \square^{\sharp} working on signs:
- The abstract operators allow to define an abstract evaluation of expressions:

$$\llbracket e \rrbracket^{\sharp} : (Vars \to Signs) \to Signs$$

Determining the sign of expressions in a Sign-environment is defined by the function $[\![]\!]: Exp \times SignEnv \rightarrow Val$

$$\begin{bmatrix} c \end{bmatrix}^{\sharp} D = \begin{cases} \{+\} & \text{if } c > 0 \\ \{-\} & \text{if } c < 0 \\ \{0\} & \text{if } c = 0 \end{cases} \\
\begin{bmatrix} v \end{bmatrix}^{\sharp} = D(v) \\
\begin{bmatrix} e_1 \Box e_2 \end{bmatrix}^{\sharp} D = \begin{bmatrix} e_1 \end{bmatrix}^{\sharp} D \Box^{\sharp} \begin{bmatrix} e_2 \end{bmatrix}^{\sharp} D \\
\begin{bmatrix} \Box e \end{bmatrix}^{\sharp} D = \Box^{\sharp} \begin{bmatrix} e_1 \end{bmatrix}^{\sharp} D$$

A remark about the notation:

[]] is given in a "distributed" form; its first argument appears between the brackets, the second follows the brackets.

Abstract operators working on signs (Addition)

+#	{0}	{+}	{-}	{-, 0}	{-,+}	$\{0, +\}$	{-, 0, +}
{0}	{0}	{+}					
{+}							
{-}							
{ - , 0}							
{-,+}							
$\{0, +\}$							
{-, 0, +}	{-, 0, +}						

Abstract operators working on signs (Multiplication)

×#	{0}	{+}	{-}	
{0}	{0}	{0}	{0}	
{+}	{0}	{+}	$\{-\}$	
$\{-\}$	{0}	$\{-\}$	{+}	
$\{-, 0\}$	{0}	$\{-, 0\}$	$\{0, +\}$	
$\{-, +\}$	{0}	$\{-, +\}$	$\{-, +\}$	
$\{0, +\}$	{0}	$\{0, +\}$	$\{-, 0\}$	
$\{-,0,+\}$	{0}	$\{-, 0, +\}$	$\{-, 0, +\}$	

Abstract operators working on signs (unary minus)

_#	{0}	{+}	{-}	{-, 0}	{-,+}	$\{0, +\}$	{-, 0, +}
	{0}	{-}	{+}	{ + , 0}	{-,+}	{0, -}	{-, 0, +}

Working an example:

$$D = \{x \mapsto \{+\}, y \mapsto \{+\}\}$$

 $[\![lab]\!]^{\sharp}$ is the abstract edge effects associated with edge k. It depends only on the label lab:

$$[\![; \!]\!]^{\sharp} D = D$$
 $[\![\text{true} (e)]\!]^{\sharp} D = D$
 $[\![\text{false} (e)]\!]^{\sharp} D = D$
 $[\![x = e ; \!]\!]^{\sharp} D = D \oplus \{x \mapsto [\![e]\!]^{\sharp} D\}$
 $[\![x = M[e] ; \!]\!]^{\sharp} D = D \oplus \{x \mapsto \{+, -, 0\}\}$
 $[\![M[e_1] = e_2 ; \!]\!]^{\sharp} D = D$

... whenever
$$D \neq \bot$$

These edge effects can be composed to the effect of a path $\pi = k_1 \dots k_r$:

$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_r \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_1 \rrbracket^{\sharp}$$

Consider a program node v:

- For every path π from program entry *start* to v the analysis should determine for each program variable x the set of all signs that the values of x may have at v as a result of executing π .
- \rightarrow Initially at program start, no information about signs is available.
- → The analysis computes a superset of the set of signs as safe information.
- \Longrightarrow For each node v, we need the set:

$$\mathcal{S}[v] = \bigcup \{ \llbracket \pi \rrbracket^{\sharp} \top \mid \pi : start \to^* v \}$$

where \top is the function bindig all variables to $\{-,0,+\}$.

This function describes that we don't know the sign of any variable at program entry.

Question:

How do we compute S[u] for every program point u?

Question:

How can we compute S[u] for every program point u?

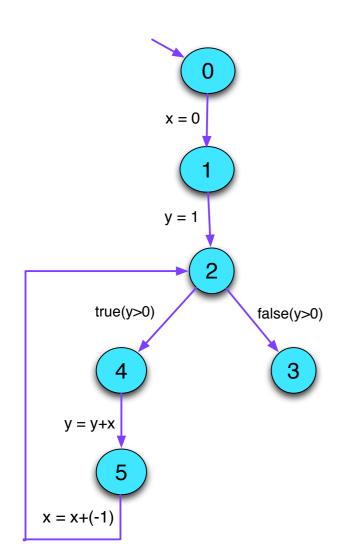
Collect all constraints on the values of S[u] into a system of constraints:

Why \supseteq ?

Wanted:

- a least solution (why least?)
- an algorithm that computes this solution

Example:



$$\mathcal{S}[0] \supseteq \top$$

$$\mathcal{S}[1] \supseteq \mathcal{S}[0] \oplus \{x \mapsto \{0\}\}$$

$$\mathcal{S}[2] \supseteq \mathcal{S}[1] \oplus \{y \mapsto \{+\}\}$$

$$\mathcal{S}[2] \supseteq \mathcal{S}[5] \oplus \{x \mapsto [x + (-1)]^{\sharp} \mathcal{S}[5]\}$$

$$\mathcal{S}[3] \supseteq \mathcal{S}[2]$$

$$\mathcal{S}[4] \supseteq \mathcal{S}[2]$$

 $\mathcal{S}[5] \supseteq \mathcal{S}[4] \oplus \{y \mapsto [y+x]^{\sharp} \mathcal{S}[4]\}$

3 An Operational Semantics

Programs are represented as control-flow graphs.

Example:

Thereby, represent:

vertex	program point
start	program start
stop	program exit
edge	labeled with a statement or a condition

Thereby, represent:

vertex	program point
start	program start
stop	program exit
edge	step of computation

Edge Labelings:

Test: Pos (e) or Neg (e) (better true(e) or false(e))

Assignment: R = e;

Load: R = M[e];

Store: $M[e_1] = e_2;$

Nop: ;

Execution of a path is a computation.

A computation transforms a state $s = (\rho, \mu)$ where:

$\rho: Vars \to \mathbf{int}$	values of variables (contents of symbolic registers)
$\mu: \mathbb{N} \to \mathbf{int}$	contents of memory

Every edge k = (u, lab, v) defines a partial transformation

$$[\![k]\!] = [\![lab]\!]$$

of the state:

$$[\![;]\!](\rho,\mu) \qquad = (\rho,\mu)$$

$$\llbracket \text{true} (e) \rrbracket (\rho, \mu) = (\rho, \mu)$$

$$[\![false (e)]\!] (\rho, \mu) = (\rho, \mu)$$

if
$$[e] \rho \neq 0$$

if
$$\llbracket e \rrbracket \rho = 0$$

$$[\![;]\!](\rho,\mu) = (\rho,\mu)$$

$$[\![\operatorname{true} (e)]\!] (\rho, \mu) = (\rho, \mu) \qquad \text{if } [\![e]\!] \rho \neq 0$$

$$[false (e)] (\rho, \mu) = (\rho, \mu)$$
 if $[e] \rho = 0$

- // [e]: evaluation of the expression e, e.g.
- $// [x+y] \{x \mapsto 7, y \mapsto -1\} = 6$
- // $[!(x == 4)] \{x \mapsto 5\} = 1$

$$//$$
 $\llbracket e \rrbracket$: evaluation of the expression e , e.g.

$$// [x+y] \{x \mapsto 7, y \mapsto -1\} = 6$$

$$// \quad [!(x == 4)] \{x \mapsto 5\} = 1$$

$$[\![R=e;]\!](\rho,\mu) = (\boxed{\rho \oplus \{R \mapsto [\![e]\!] \rho\}},\mu)$$

// where "\(\operatorname{'}\)" modifies a mapping at a given argument

$$[R = M[e];] (\rho, \mu) = (\rho \oplus \{R \mapsto \mu([e] \rho)\}), \mu)$$
$$[M[e_1] = e_2;] (\rho, \mu) = (\rho, \mu \oplus \{[e_1] \rho \mapsto [e_2] \rho\})$$

Example:

$$[x = x + 1;](\{x \mapsto 5\}, \mu) = (\rho, \mu)$$
 where

$$\rho = \{x \mapsto 5\} \oplus \{x \mapsto [x+1] \{x \mapsto 5\}\}$$

$$= \{x \mapsto 5\} \oplus \{x \mapsto 6\}$$

$$= \{x \mapsto 6\}$$

A path $\pi = k_1 k_2 \dots k_m$ defines a computation in the state s if

$$s \in def(\llbracket k_m \rrbracket \circ \ldots \circ \llbracket k_1 \rrbracket)$$

The result of the computation is $\llbracket \pi \rrbracket s = (\llbracket k_m \rrbracket \circ \ldots \circ \llbracket k_1 \rrbracket) s$

The approach:

A static analysis needs to collect correct and hopefully precise information about a program in a terminating computation.

Concepts:

- partial orders relate information for their contents/quality/precision,
- least upper bounds combine information in the best possible way,
- monotonic functions preserve the order, prevent loss of collected information, prevent oscillation.

4 Complete Lattices

A set \mathbb{D} together with a relation $\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$ is a partial order if for all $a, b, c \in \mathbb{D}$,

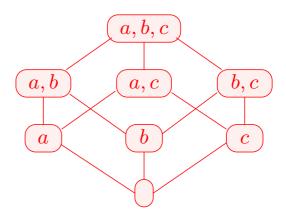
$$a \sqsubseteq a$$
 $reflexivity$
 $a \sqsubseteq b \land b \sqsubseteq a \implies a = b$ $anti-symmetry$
 $a \sqsubseteq b \land b \sqsubseteq c \implies a \sqsubseteq c$ $transitivity$

Intuition: \sqsubseteq represents precision.

By convention: $a \sqsubseteq b$ means a is at least as precise as b.

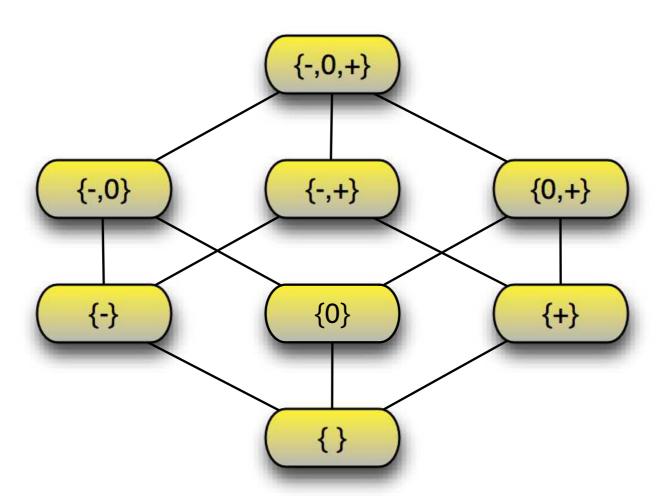
Examples:

1. $\mathbb{D} = 2^{\{a,b,c\}}$ with the relation " \subseteq ":

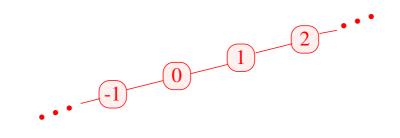


Examples:

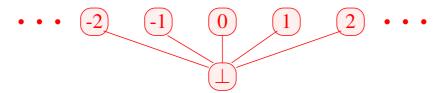
1. The rules-of-sign analysis uses the following lattice $\mathbb{D}=2^{\{-,0,+\}}$ with the relation " \subseteq ":



- 2. \mathbb{Z} with the relation "=":
- 2. \mathbb{Z} with the relation " \leq ":



3. $\mathbb{Z}_{\perp} = \mathbb{Z} \cup \{\perp\}$ with the ordering:



 $d\in\mathbb{D}$ is called upper bound for $X\subseteq\mathbb{D}$ if

$$x \sqsubseteq d$$
 for all $x \in X$

 $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$x \sqsubseteq d$$
 for all $x \in X$

d is called least upper bound (lub) if

- 1. d is an upper bound and
- 2. $d \sqsubseteq y$ for every upper bound y of X.

 $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$x \sqsubseteq d$$
 for all $x \in X$

d is called least upper bound (lub) if

- 1. d is an upper bound and
- 2. $d \sqsubseteq y$ for every upper bound y of X.

The least upper bound is the youngest common ancestor in the pictorial representation of lattices.

Intuition: It is the best combined information for X.

Caveat:

- $\{0, 2, 4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound!
- $\{0, 2, 4\} \subseteq \mathbb{Z}$ has the upper bounds $4, 5, 6, \ldots$

A partially ordered set \mathbb{D} is a complete lattice (cl) if every subset $X \subseteq \mathbb{D}$ has a least upper bound $\coprod X \in \mathbb{D}$.

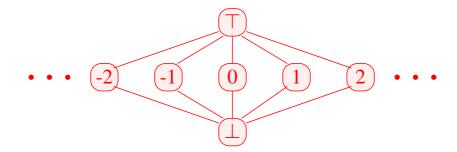
Note:

Every complete lattice has

- \rightarrow a least element $\perp = \square \emptyset \in \mathbb{D}$;
- \rightarrow a greatest element $\top = \bigsqcup \mathbb{D} \in \mathbb{D}$.

Examples:

- 1. $\mathbb{D} = 2^{\{-,0,+\}}$ with \sqsubseteq is a complete lattice
- 2. $\mathbb{D} = \mathbb{Z}$ with "\leq" is not a complete lattice.
- 3. $\mathbb{D} = \mathbb{Z}_{\perp}$ is also not a complete lattice
- 4. With an extra element \top , we obtain the flat lattice $\mathbb{Z}_{\perp}^{\top} = \mathbb{Z} \cup \{\bot, \top\}$:



Theorem:

If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound $\prod X$.

Back to the system of constraints for Rules-of-Signs Analysis!

$$\mathcal{S}[start] \ \supseteq \ \top$$

$$\mathcal{S}[v] \ \supseteq \ [\![k]\!]^{\sharp} (\mathcal{S}[u]) \qquad \qquad k = (u, _, v) \quad \text{edge}$$

Combine all constraints for a variable v by least-upper-bound operator \sqsubseteq :

$$S[v] \supseteq | |\{[k]^{\sharp}(S[u]) | k = (u, _, v) \text{ edge}\}|$$

Our generic form of the systems of constraints:

$$x_i \supseteq f_i(x_1, \dots, x_n)$$
 (*)

Relation to the running example:

x_i	unknown	here:	$\mathcal{S}[\underline{u}]$
\square	values	here:	Signs
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\subseteq
$f_i \colon \mathbb{D}^n o \mathbb{D}$	constraint	here:	•••

Examples:

(1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic

Examples:

- (1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic
- (2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering "\le \text{"}). Then:
 - inc x = x + 1 is monotonic.
 - $\operatorname{dec} x = x 1$ is monotonic.

Examples:

- (1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic
- (2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering "\le \text{"}). Then:
 - inc x = x + 1 is monotonic.
 - $\operatorname{dec} x = x 1$ is monotonic.
 - inv x = -x is not monotonic

Theorem:

If $f_1: \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2: \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1: \mathbb{D}_1 \to \mathbb{D}_3$

Theorem:

If $\mathbb D$ is a complete lattice, then the set $[S \to \mathbb D]$ of functions $f:S \to \mathbb D$ is also a complete lattice where

$$f \sqsubseteq g$$
 iff $f x \sqsubseteq g x$ for all $x \in \mathbb{D}_1$

Theorem:

If $f_1: \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2: \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1: \mathbb{D}_1 \to \mathbb{D}_3$

Theorem:

If \mathbb{D} is a complete lattice, then the set $[S \to \mathbb{D}]$ of functions $f: S \to \mathbb{D}$ is also a complete lattice where

$$f \sqsubseteq g$$
 iff $f x \sqsubseteq g x$ for all $x \in \mathbb{D}_1$

In particular for $F \subseteq [S \to \mathbb{D}_2]$,

$$\bigsqcup F = f$$
 with $f x = \bigsqcup \{g \ x \mid g \in F\}$

Wanted: least solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Wanted: least solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with $y_i = f_i(x_1, ..., x_n)$.

Wanted: least solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with $y_i = f_i(x_1, ..., x_n)$.

• If all f_i are monotonic, then also F

Wanted: least solution for

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with $y_i = f_i(x_1, ..., x_n)$.

- If all f_i are monotonic, then also F
- We successively approximate a solution from below. We construct:

$$\underline{\perp}, \quad F \underline{\perp}, \quad F^2 \underline{\perp}, \quad F^3 \underline{\perp}, \quad \dots$$

Intuition: This iteration eliminates unjustified assumptions.

Hope: We eventually reach a solution!

Theorem

• $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$ form an ascending chain:

$$\underline{\perp}$$
 \sqsubseteq $F \underline{\perp}$ \sqsubseteq $F^2 \underline{\perp}$ \sqsubseteq ...

- If $F^k \perp = F^{k+1} \perp = F^k$ is the least solution.
- If all ascending chains are finite, such a k always exists.

Proof

The first claim follows by induction:

Foundation:
$$F^0 \perp = \perp \sqsubseteq F^1 \perp$$

Step: Assume $F^{i-1} \perp \sqsubseteq F^i \perp$. Then
$$F^i \perp = F(F^{i-1} \perp) \sqsubseteq F(F^i \perp) = F^{i+1} \perp$$
since F monotonic

Step: Assume
$$F^{i-1} \perp \sqsubseteq F^i \perp .$$
 Then
$$F^i \perp = F(F^{i-1} \perp) \sqsubseteq F(F^i \perp) = F^{i+1} \perp$$
 since F monotonic

Conclusion:

If \mathbb{D} is finite, a solution can be found that is definitely the least solution.

Question: What, if \mathbb{D} is not finite?

Theorem

Knaster – Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixed point $d_0 \in \mathbb{D}$.

Remark:

The least fixed point d_0 is in P and a lower bound $\implies d_0$ is the least value x

Application:

Assume
$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

is a system of constraints where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

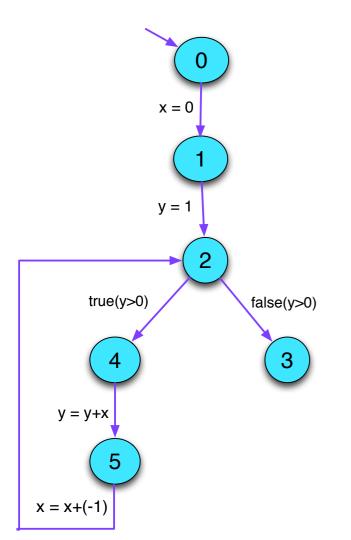
 \implies least solution of (*) == least fixed point of F

Conclusion:

Systems of inequalities can be solved through fixed-point iteration, i.e., by repeated evaluation of right-hand sides

Caveat: Naive fixed-point iteration is rather inefficient

Example:

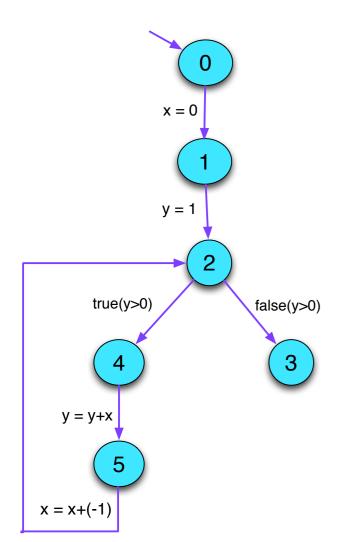


0		1		2		3		4		5		
	x	y	x	y	x	y	x	y	x	y		y

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns

Example:



0		1		2		3		4		5	
x	y	x	y	x	y	x	y	x	y	x	$\mid y \mid$

The code for Round Robin Iteration in Java looks as follows:

```
for (i = 1; i \le n; i++) x_i = \bot;
do {
      finished = true;
      for (i = 1; i \le n; i++) {
             new = f_i(x_1, \dots, x_n);
             if (!(x_i \supseteq new)) {
                    finished = false;
                    x_i = x_i \sqcup new;
} while (!finished);
```

What we have learned:

- The information derived by static program analysis is partially ordered in a complete lattice.
- the partial order represents information content/precision of the lattice elements.
- least upper-bound combines information in the best possible way.
- Monotone functions prevent loss of information.

For a complete lattice \mathbb{D} , consider systems:

$$\mathcal{I}[start] \supseteq d_0$$

$$\mathcal{I}[v] \supseteq [\![k]\!]^{\sharp} (\mathcal{I}[u]) \qquad k = (u, _, v) \text{ edge}$$

where $d_0 \in \mathbb{D}$ and all $[\![k]\!]^{\sharp} : \mathbb{D} \to \mathbb{D}$ are monotonic ...

Wanted: MOP (Merge Over all Paths)

$$\mathcal{I}^*[v] = \bigsqcup \{ \llbracket \pi \rrbracket^\sharp d_0 \mid \pi : start \to^* v \}$$

Theorem

Kam, Ullman 1975

Assume \mathcal{I} is a solution of the constraint system. Then:

$$\mathcal{I}[v] \supseteq \mathcal{I}^*[v]$$
 for every v

In particular: $\mathcal{I}[v] \supseteq \llbracket \pi \rrbracket^{\sharp} d_0$ for every $\pi : start \to^* v$

Disappointment: Are solutions of the constraint system just upper bounds?

Answer: In general: yes

Notable exception, if all functions $[\![k]\!]^{\sharp}$ are distributive.

The function $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called distributive, if $f(\bigsqcup X) = \bigsqcup \{ f \ x \mid x \in X \}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;

Remark: If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then it is also monotonic

Theorem Kildall 1972

Assume all *v* are reachable from *start*.

Then: If all effects of edges $[\![k]\!]^{\sharp}$ are distributive, $\mathcal{I}^*[v] = \mathcal{I}[v]$ holds for all v.

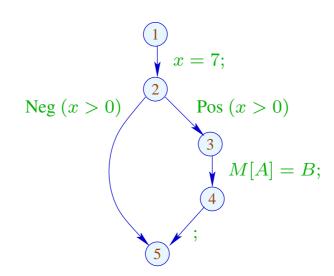
Question: Are the edge effects of the Rules-of-Sign analysis distributive?

5 Constant Propagation

Goal: Execute as much of the code at compile-time as possible!

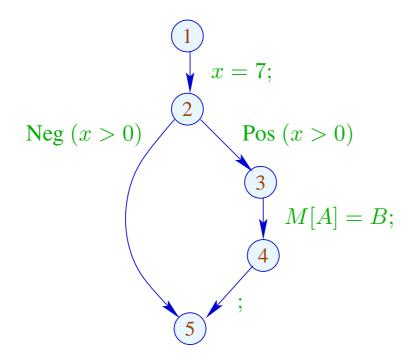
Example:

$$x = 7;$$
 if $(x > 0)$
$$M[A] = B;$$



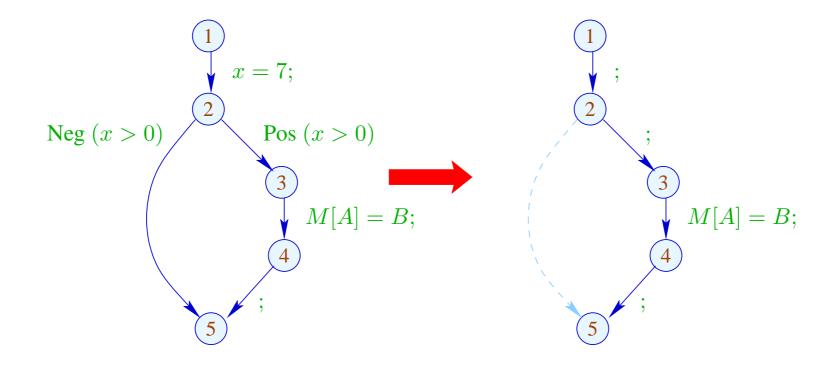
Obviously, x has always the value 7 Thus, the memory access is always executed

Goal:



Obviously, x has always the value 7 Thus, the memory access is always executed

Goal:



Design an analysis that for every program point u determines the values that variables definitely have at u;

As a side effect, it also tells whether u can be reached at all

Design an analysis that for every program point u, determines the values that variables definitely have at u;

As a side effect, it also tells whether u can be reached at all

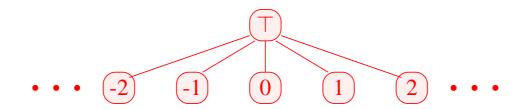
We need to design a complete lattice and an abstract semantics for this analysis.

It abstracts from the variable binding of the state, $\rho: Vars \to \mathbf{int}$, in a similar way as the Rules-of-Sign analysis.

As in the case of the Rules-of-Signs analysis the complete lattice is constructed in two steps.

(1) The potential values of variables:

$$\mathbb{Z}^\top = \mathbb{Z} \cup \{\top\} \qquad \text{with} \quad x \sqsubseteq y \quad \text{iff } y = \top \text{ or } x = y$$



Caveat: \mathbb{Z}^{\top} is not a complete lattice in itself

(2)
$$\mathbb{D} = (Vars \to \mathbb{Z}^{\top})_{\perp} = (Vars \to \mathbb{Z}^{\top}) \cup \{\bot\}$$

// \perp denotes: "not reachable"

with $D_1 \sqsubseteq D_2$ iff $\perp = D_1$ or

 $D_1 x \sqsubseteq D_2 x$ $(x \in Vars)$

Remark: D is a complete lattice

For every edge $k = (_, lab, _)$, construct an effect function $[\![k]\!]^\sharp = [\![lab]\!]^\sharp : \mathbb{D} \to \mathbb{D}$ which simulates the concrete computation.

Obviously, $[\![lab]\!]^{\sharp} \perp = \perp$ for all labNow let $\perp \neq D \in Vars \rightarrow \mathbb{Z}^{\top}$.

• We use D to determine the values of expressions.

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain \top

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain \top

 \Longrightarrow

As in the Rules-of-Sign analysis, we replace the concrete operators

 \square by abstract operators \square^{\sharp} that can handle \top :

$$a \Box^{\sharp} b = \begin{cases} \top & \text{if} \quad a = \top \text{ or } b = \top \\ a \Box b & \text{otherwise} \end{cases}$$

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain \top

 \Longrightarrow

As in the Rules-of-Sign analysis, we replace the concrete operators

 \square by abstract operators \square^{\sharp} that can handle \top :

$$a \,\Box^{\sharp} \, b = \left\{ \begin{array}{ll} \top & \text{if} \quad a = \top \text{ or } b = \top \\ a \,\Box \, b & \text{otherwise} \end{array} \right.$$

• The abstract operators allow to define an abstract evaluation of expressions:

$$\llbracket e \rrbracket^{\sharp} : (Vars \to \mathbb{Z}^{\top}) \to \mathbb{Z}^{\top}$$

Abstract evaluation of expressions is like the concrete evaluation — but with abstract values and operators. Here:

$$[\![c]\!]^{\sharp} D = c$$

$$[\![e_1 \square e_2]\!]^{\sharp} D = [\![e_1]\!]^{\sharp} D \square^{\sharp} [\![e_2]\!]^{\sharp} D$$

... analogously for unary operators

Abstract evaluation of expressions is like the concrete evaluation — but with abstract values and operators. Here:

$$[c]^{\sharp} D = c$$

$$[e_1 \square e_2]^{\sharp} D = [e_1]^{\sharp} D \square^{\sharp} [e_2]^{\sharp} D$$

... analogously for unary operators

Example:
$$D = \{x \mapsto 2, y \mapsto \top\}$$

$$[x + 7]^{\sharp} D = [x]^{\sharp} D +^{\sharp} [7]^{\sharp} D$$

$$= 2 +^{\sharp} 7$$

$$= 9$$

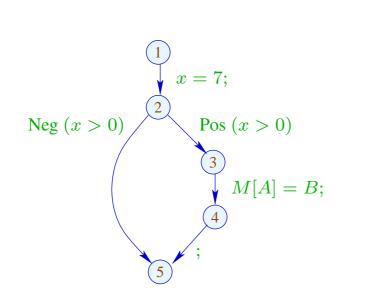
$$[x - y]^{\sharp} D = 2 -^{\sharp} \top$$

$$= T$$

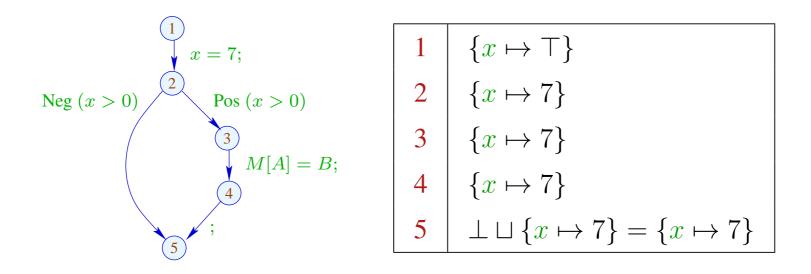
Thus, we obtain the following abstract edge effects $[\![lab]\!]^{\sharp}$:

... whenever $D \neq \bot$

At *start*, we have $D_{\top} = \{x \mapsto \top \mid x \in Vars\}$.



At *start*, we have $D_{\top} = \{x \mapsto \top \mid x \in Vars\}$. Example:



The abstract effects of edges $[\![k]\!]^{\sharp}$ are again composed to form the effects of paths $\pi = k_1 \dots k_r$ by:

$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_r \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_1 \rrbracket^{\sharp} : \mathbb{D} \to \mathbb{D}$$

Idea for Correctness:

Abstract Interpretation

Cousot, Cousot 1977

Establish a description relation Δ between the concrete values and their descriptions with:

$$x \Delta a_1 \quad \land \quad a_1 \sqsubseteq a_2 \quad \Longrightarrow \quad x \Delta a_2$$

Concretization:
$$\gamma a = \{x \mid x \Delta a\}$$

// returns the set of described values

(1) Values:
$$\Delta \subseteq \mathbb{Z} \times \mathbb{Z}^{\top}$$

$$z \Delta a$$
 iff $z = a \lor a = \top$

Concretization:

$$\gamma a = \begin{cases} \{a\} & \text{if} \quad a \sqsubseteq \top \\ \mathbb{Z} & \text{if} \quad a = \top \end{cases}$$

(1) Values:
$$\Delta \subseteq \mathbb{Z} \times \mathbb{Z}^{\top}$$

$$z \Delta a \quad \text{iff} \quad z = a \lor a = \top$$

Concretization:

$$\gamma a = \begin{cases} \{a\} & \text{if} \quad a \sqsubseteq \top \\ \mathbb{Z} & \text{if} \quad a = \top \end{cases}$$

(2) Variable Bindings:
$$\Delta \subseteq (Vars \to \mathbb{Z}) \times (Vars \to \mathbb{Z}^{\top})_{\perp}$$

$$\rho \Delta D \quad \text{iff} \quad D \neq \perp \wedge \rho x \sqsubseteq D x \quad (x \in Vars)$$

Concretization:

$$\gamma D = \begin{cases} \emptyset & \text{if } D = \bot \\ \{\rho \mid \forall x : (\rho x) \Delta (D x)\} & \text{otherwise} \end{cases}$$

Example: $\{x \mapsto 1, y \mapsto -7\}$ Δ $\{x \mapsto \top, y \mapsto -7\}$

(3) States:

$$\Delta \subseteq ((Vars \to \mathbb{Z}) \times (\mathbb{N} \to \mathbb{Z})) \times (Vars \to \mathbb{Z}^{\top})_{\perp}$$
$$(\rho, \mu) \Delta D \quad \text{iff} \quad \rho \Delta D$$

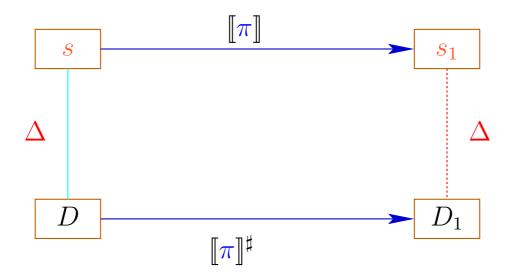
Concretization:

$$\gamma\,D = \left\{ \begin{array}{ll} \emptyset & \text{if} \quad D = \bot \\ \{(\rho,\mu) \mid \forall\,x: \ (\rho\,x) \ \Delta \ (D\,x)\} & \text{otherwise} \end{array} \right.$$

We show correctness:

(*) If $s \Delta D$ and $[\![\pi]\!] s$ is defined, then:

$$(\llbracket \pi \rrbracket s) \Delta (\llbracket \pi \rrbracket^{\sharp} D)$$



The abstract semantics simulates the concrete semantics In particular:

$$\llbracket \pi \rrbracket \, \mathbf{s} \in \gamma \, (\llbracket \pi \rrbracket^{\sharp} \, D)$$

The abstract semantics simulates the concrete semantics In particular:

$$\llbracket \pi \rrbracket \, \mathbf{s} \in \gamma \, (\llbracket \pi \rrbracket^{\sharp} \, D)$$

In practice, this means for example that Dx = -7 implies:

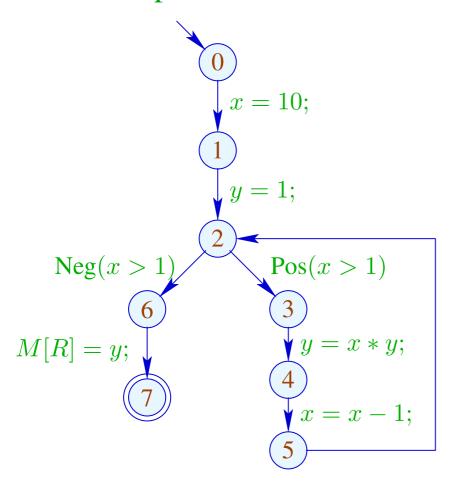
$$\rho' x = -7 \text{ for all } \rho' \in \gamma D$$

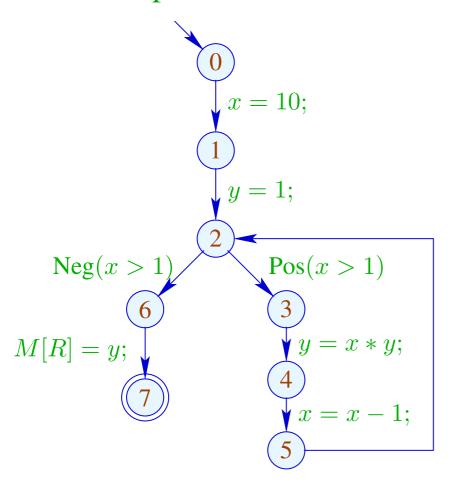
$$\longrightarrow \rho_1 x = -7 \text{ for } (\rho_1, \underline{\ }) = \llbracket \pi \rrbracket s$$

The MOP-Solution:

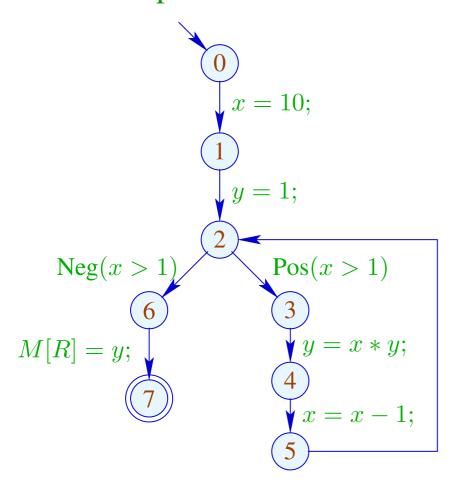
$$\mathcal{D}^*[v] \ = \ \bigsqcup\{\llbracket\pi\rrbracket^\sharp \ D_\top \mid \pi : start \to^* v\}$$
 where
$$D_\top \ x = \top \qquad (x \in \mathit{Vars}) \ .$$

In order to approximate the MOP, we use our constraint system

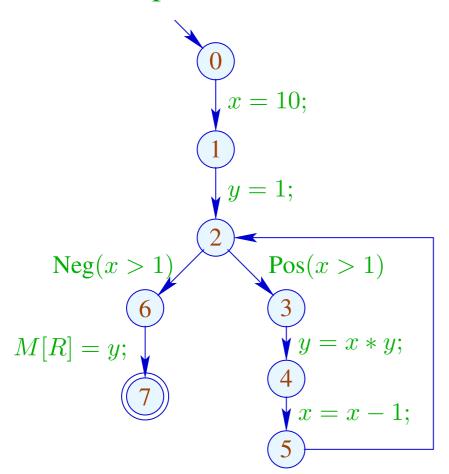




	1		
	x	$\mid y \mid$	
0	T	T	
1	10	$\mid \top \mid$	
2	10	$\mid 1 \mid$	
3	10	$\mid 1 \mid$	
4	10	10	
5	9	10	
6			
7			



	1		2	
	x	y	x	$\mid y \mid$
0	T	Т	T	T
1	10	$\mid \top \mid$	10	$\mid \top \mid$
2	10	1	T	$\mid \top \mid$
3	10	1	T	$\mid \top \mid$
4	10	10	$\mid \top \mid$	$\mid \top \mid$
5	9	10	T	$\mid \top \mid$
6			$\mid \top \mid$	$\mid \top \mid$
7			T	$\mid \top \mid$



	1		2		3	
	x	y	x	y	x	y
0	T	Т	T	T		
1	10	$\mid \top \mid$	10	$\mid \top \mid$		
2	10	1	T	$\mid \top \mid$		
3	10	1	$\mid \top \mid$	$\mid \top \mid$		
4	10	10	$\mid \top \mid$	$\mid \top \mid$	di	to
5	9	10		$\mid \top \mid$		
6				$\mid \top \mid$		
7				$ \top $		

Concrete vs. Abstract Execution:

Although program and all initial values are given, abstract execution does not compute the result!

On the other hand, fixed-point iteration is guaranteed to terminate:

For n program points and m variables, we maximally need: $n \cdot (m+1)$ rounds

Observation: The effects of edges are not distributive!

Counterexample:
$$f = [x = x + y]^{\sharp}$$

Let
$$D_1 = \{x \mapsto 2, y \mapsto 3\}$$

 $D_2 = \{x \mapsto 3, y \mapsto 2\}$
Then $f D_1 \sqcup f D_2 = \{x \mapsto 5, y \mapsto 3\} \sqcup \{x \mapsto 5, y \mapsto 2\}$
 $= \{x \mapsto 5, y \mapsto \top\}$
 $\neq \{x \mapsto \top, y \mapsto \top\}$
 $= f\{x \mapsto \top, y \mapsto \top\}$
 $= f(D_1 \sqcup D_2)$

We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$\mathcal{D}^*[v] \subseteq \mathcal{D}[v]$$

We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$\mathcal{D}^*[v] \subseteq \mathcal{D}[v]$$

As an upper approximation, $\mathcal{D}[v]$ nonetheless describes the result of every program execution π that reaches v:

$$(\llbracket \pi \rrbracket (\rho, \mu)) \Delta (\mathcal{D}[v])$$

whenever $\llbracket \boldsymbol{\pi} \rrbracket (\rho, \mu)$ is defined

6 Removing superfluous computations

A computation may be superfluous because

- the result is already available, available-expression analysis, or
- ullet the result is not needed \longrightarrow live-variable analysis.

6.1 Redundant computations

Idea:

If an expression at a program point is guaranteed to be computed to the value it had before, then

- → store this value after the first computation;
- → replace every further computation through a look-up

Question to be answered by static analysis: Is an expression available?

Problem: Identify sources of redundant computations!

Example:

$$z = 1;$$

$$y = M[17];$$

$$A: x_1 = y+z;$$

$$\vdots$$

$$B: x_2 = y+z;$$

B is a redundant computation of the value of y+z, if

- (1) A is always executed before B; and
- (2) y and z at B have the same values as at A

Situation: The value of x + y is computed at program point u

$$x+y$$
 u
 v

and a computation along path π reaches v where it evaluates again x+y

If x and y have not been modified in π , then evaluation of x + y at v returns the same value as evaluation at u.

This property can be checked at every edge in π .

Situation: The value of x + y is computed at program point u

$$x+y$$
 u
 \overline{v}

and a computation along path π reaches v where it evaluates again x + y If x and y have not been modified in π , then evaluation of x + y at v is known to return the same value as evaluation at u

This property can be checked at every edge in π .

More efficient: Do this check for all expressions occurring in the program in parallel.

Assume that the expressions $A = \{e_1, \dots, e_r\}$ are available at u.

Situation: The value of x + y is computed at program point u

$$x+y$$
 u
 τ
 v

and a computation along path π reaches v where it evaluates again x + y If x and y have not been modified in π , then evaluation of x + y at v must return the same value as evaluation at y.

This property can be checked at every edge in π .

More efficient: Do this check for all expressions occurring in the program in parallel.

Assume that the expressions $A = \{e_1, \dots, e_r\}$ are available at u.

Every edge k transforms this set into a set $[\![k]\!]^{\sharp} A$ of expressions whose values are available after execution of k.

 $[\![k]\!]^{\sharp} A$ is the (abstract) edge effect associated with k

These edge effects can be composed to the effect of a path $\pi = k_1 \dots k_r$:

$$\llbracket \pi
rbracket^{\sharp} = \llbracket k_r
rbracket^{\sharp} \circ \ldots \circ \llbracket k_1
rbracket^{\sharp}$$

These edge effects can be composed to the effect of a path $\pi = k_1 \dots k_r$:

$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_r \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_1 \rrbracket^{\sharp}$$

The effect $[\![k]\!]^{\sharp}$ of an edge k = (u, lab, v) only depends on the label lab, i.e., $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$

These edge effects can be composed to the effect of a path $\pi = k_1 \dots k_r$:

$$\llbracket \pi
rbracket^{\sharp} = \llbracket k_r
rbracket^{\sharp} \circ \ldots \circ \llbracket k_1
rbracket^{\sharp}$$

The effect $[\![k]\!]^{\sharp}$ of an edge k = (u, lab, v) only depends on the label lab, i.e., $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ where:

$$[x = M[e];]^{\sharp} A = (A \cup \{e\}) \setminus Expr_x$$

 $[M[e_1] = e_2;]^{\sharp} A = A \cup \{e_1, e_2\}$

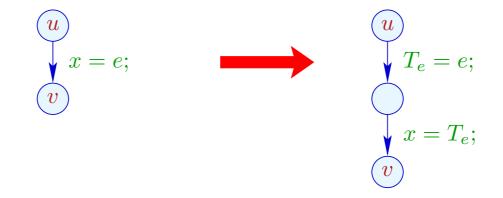
- An expression is available at v if it is available along all paths π to v.
- \rightarrow For every such path π , the analysis determines the set of expressions that are available along π .
- \rightarrow Initially at program start, nothing is available.
- → The analysis computes the intersection of the availability sets as safe information.
- \Longrightarrow For each node v, we need the set:

$$\mathcal{A}[v] = \bigcap \{ \llbracket \pi \rrbracket^{\sharp} \emptyset \mid \pi : start \to^* v \}$$

How does a compiler exploit this information?

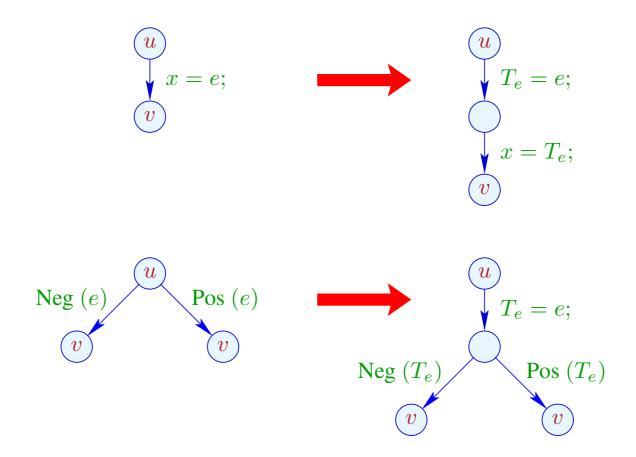
Transformation UT (unique temporaries):

We provide a novel register T_e as storage for the values of e:



Transformation UT (unique temporaries):

We provide novel registers T_e as storage for the value of e:



... analogously for R = M[e]; and $M[e_1] = e_2$;.

Transformation AEE (available expression elimination):

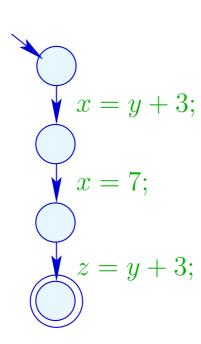
If e is available at program point u, then e need not be re-evaluated:

We replace the assignment with Nop.

$$x = y+3;$$

$$x = 7;$$

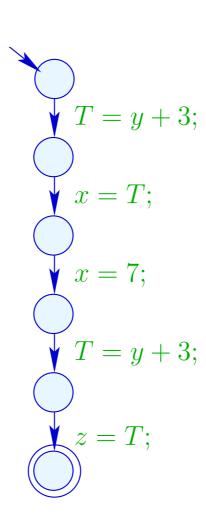
$$z = y+3;$$



$$x = y+3;$$

$$x = 7;$$

$$z = y+3;$$



$$\{y+3\} \qquad T = y+3; x = y+3; x = 7; x = 7; z = y+3; \{y+3\} \qquad z = T; \{y+3\} \qquad z = T; \{y+3\} \qquad z = T;$$

Warning:

Transformation UT is only meaningful for assignments x = e; where:

```
\rightarrow x \notin Vars(e); why?
```

$$\rightarrow e \not\in Vars;$$
 why?

 \rightarrow the evaluation of e is non-trivial; why?

Warning:

Transformation UT is only meaningful for assignments x = e; where:

- \rightarrow $x \notin Vars(e)$; otherwise e is not available afterwards.
- \rightarrow $e \notin Vars$; otherwise values are shuffled around
- \rightarrow the evaluation of e is non-trivial; otherwise the efficiency of the code is decreased.

Open question ...

Question:

How do we compute A[u] for every program point u?

Question:

How can we compute A[u] for every program point? u

We collect all constraints on the values of $\mathcal{A}[u]$ into a system of constraints:

Why \subseteq ?

Question:

How can we compute A[u] for every program point? u

Idea:

We collect all constraints on the values of $\mathcal{A}[u]$ into a system of constraints:

$$\mathcal{A}[start] \subseteq \emptyset$$

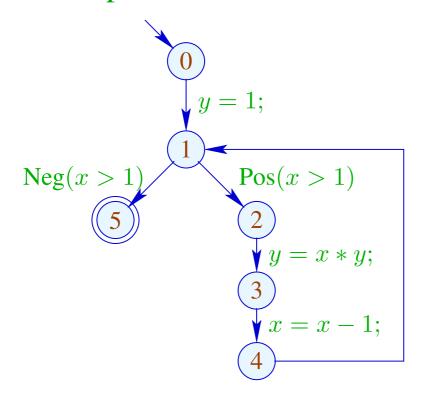
$$\mathcal{A}[v] \subseteq [\![k]\!]^{\sharp} (\mathcal{A}[u]) \qquad k = (u, _, v) \text{ edge}$$

Why \subseteq ?

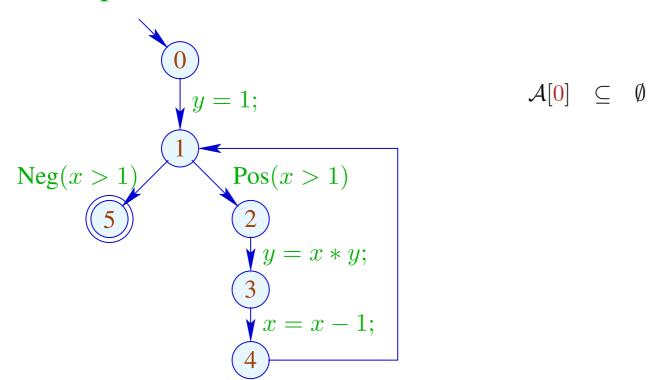
Then combine all constraints for each variable v by applying the least-upper-bound operator \longrightarrow

$$\mathcal{A}[v] \subseteq \bigcap \{ \llbracket k \rrbracket^{\sharp} \left(\mathcal{A}[u] \right) \mid k = (u, _, v) \text{ edge} \}$$

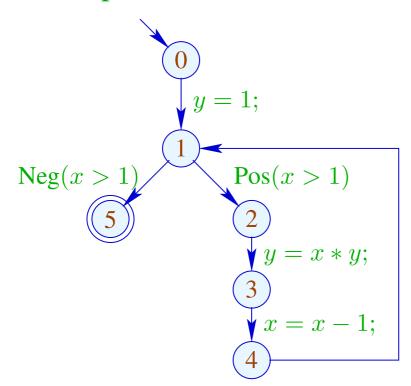
- a greatest solution (why greatest?)
- an algorithm that computes this solution



- a greatest solution (why greatest?)
- an algorithm that computes this solution

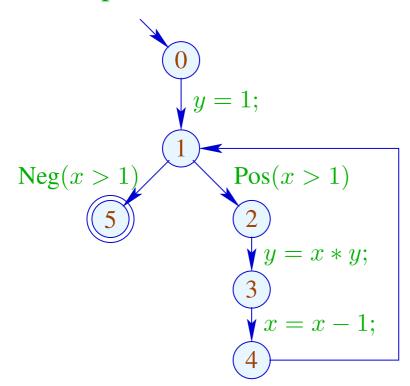


- a greatest solution (why greatest?)
- an algorithm that computes this solution



$$\begin{array}{cccc} \mathcal{A}[\mathbf{0}] & \subseteq & \emptyset \\ \\ \mathcal{A}[\mathbf{1}] & \subseteq & (\mathcal{A}[\mathbf{0}] \cup \{1\}) \backslash Expr_y \\ \\ \mathcal{A}[\mathbf{1}] & \subseteq & \mathcal{A}[\mathbf{4}] \end{array}$$

- a greatest solution (why greatest?)
- an algorithm that computes this solution



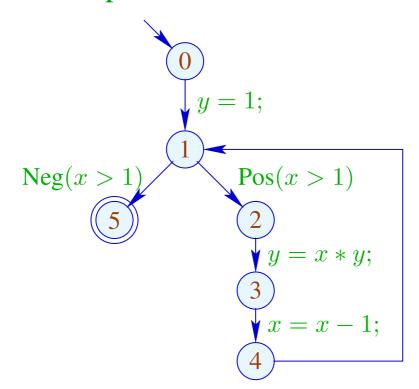
$$\mathcal{A}[\mathbf{0}] \subseteq \emptyset$$

$$\mathcal{A}[\mathbf{1}] \subseteq (\mathcal{A}[\mathbf{0}] \cup \{1\}) \backslash Expr_y$$

$$\mathcal{A}[\mathbf{1}] \subseteq \mathcal{A}[\mathbf{4}]$$

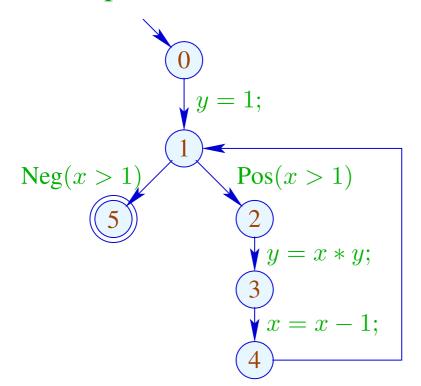
$$\mathcal{A}[\mathbf{2}] \subseteq \mathcal{A}[\mathbf{1}] \cup \{x > 1\}$$

- a greatest solution (why greatest?)
- an algorithm that computes this solution



$$\mathcal{A}[0] \subseteq \emptyset
\mathcal{A}[1] \subseteq (\mathcal{A}[0] \cup \{1\}) \setminus Expr_y
\mathcal{A}[1] \subseteq \mathcal{A}[4]
\mathcal{A}[2] \subseteq \mathcal{A}[1] \cup \{x > 1\}
\mathcal{A}[3] \subseteq (\mathcal{A}[2] \cup \{x * y\}) \setminus Expr_y$$

- a greatest solution (why greatest?)
- an algorithm that computes this solution



$$\mathcal{A}[0] \subseteq \emptyset$$

$$\mathcal{A}[1] \subseteq (\mathcal{A}[0] \cup \{1\}) \backslash Expr_y$$

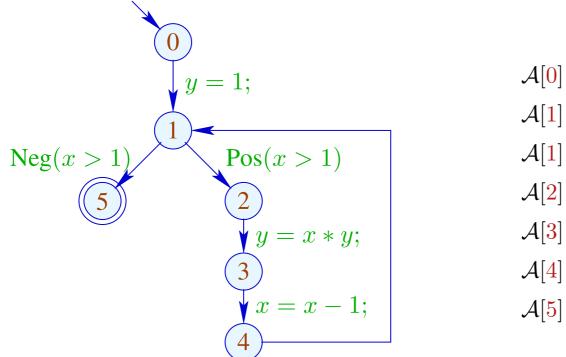
$$\mathcal{A}[1] \subseteq \mathcal{A}[4]$$

$$\mathcal{A}[2] \subseteq \mathcal{A}[1] \cup \{x > 1\}$$

$$\mathcal{A}[3] \subseteq (\mathcal{A}[2] \cup \{x * y\}) \backslash Expr_y$$

$$\mathcal{A}[4] \subseteq (\mathcal{A}[3] \cup \{x - 1\}) \backslash Expr_x$$

- a greatest solution (why greatest?)
- an algorithm that computes this solution



$$\mathcal{A}[0] \subseteq \emptyset$$

$$\mathcal{A}[1] \subseteq (\mathcal{A}[0] \cup \{1\}) \setminus Expr_y$$

$$\mathcal{A}[1] \subseteq \mathcal{A}[4]$$

$$\mathcal{A}[2] \subseteq \mathcal{A}[1] \cup \{x > 1\}$$

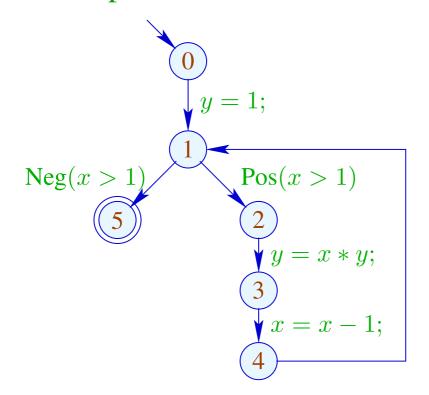
$$\mathcal{A}[3] \subseteq (\mathcal{A}[2] \cup \{x * y\}) \setminus Expr_y$$

$$\mathcal{A}[4] \subseteq (\mathcal{A}[3] \cup \{x - 1\}) \setminus Expr_x$$

$$\mathcal{A}[5] \subseteq \mathcal{A}[1] \cup \{x > 1\}$$

- a greatest solution,
- an algorithm that computes this solution.

Example:



Solution:

$$\mathcal{A}[0] = \emptyset$$
 $\mathcal{A}[1] = \{1\}$
 $\mathcal{A}[2] = \{1, x > 1\}$
 $\mathcal{A}[3] = \{1, x > 1\}$
 $\mathcal{A}[4] = \{1\}$
 $\mathcal{A}[5] = \{1, x > 1\}$

Observation:

• Again, the possible values for A[u] form a complete lattice:

$$\mathbb{D} = 2^{Expr} \quad \text{with} \quad B_1 \sqsubseteq B_2 \quad \text{iff} \quad B_1 \supseteq B_2$$

- The order on the lattice elements indicates what is better information,
 - more available expressions may allow more optimizations

Observation:

• Again, the possible values for A[u] form a complete lattice:

$$\mathbb{D} = 2^{Expr}$$
 with $B_1 \sqsubseteq B_2$ iff $B_1 \supseteq B_2$

- The order on the lattice elements indicates what is better information,
 - more available expressions may allow more optimizations
- The functions $[\![k]\!]^{\sharp}: \mathbb{D} \to \mathbb{D}$ have the form $f_i \, x = a_i \cap x \cup b_i$. They are called *gen/kill* functions — \cap kills, \cup generates.
- they are monotonic, i.e.,

$$[\![k]\!]^{\sharp}(B_1) \sqsubseteq [\![k]\!]^{\sharp}(B_2)$$
 iff $B_1 \sqsubseteq B_2$

The operations " \circ ", " \sqcup " and " \sqcap " can be explicitly defined by:

$$(f_2 \circ f_1) x = a_1 \cap a_2 \cap x \cup a_2 \cap b_1 \cup b_2$$

$$(f_1 \cup f_2) x = (a_1 \cup a_2) \cap x \cup b_1 \cup b_2$$

$$(f_1 \cap f_2) x = (a_1 \cup b_1) \cap (a_2 \cup b_2) \cap x \cup b_1 \cap b_2$$

6.2 Removing Assignments to Dead Variables

Example:

1:
$$x = y + 2;$$

$$2: y = 5;$$

$$3: x = y + 3;$$

The value of x at program points 1, 2 is overwritten before it can be used.

Therefore, we call the variable x dead at these program points.

Note:

- \rightarrow Assignments to dead variables can be removed.
- \rightarrow Such inefficiencies may originate from other transformations.

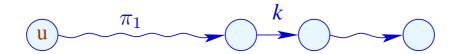
Note:

- \rightarrow Assignments to dead variables can be removed.
- \rightarrow Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called live at u along a path π starting at u if π can be decomposed into $\pi = \pi_1 k \pi_2$ such that:

- k is a use of x and
- π_1 does not contain a definition of x.

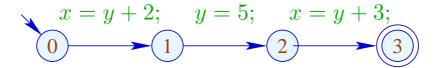


Thereby, the set of all defined or used variables at an edge $k = (_, lab, _)$ is defined by

lab	used	defined
;	Ø	Ø
true(e)	$Vars\left(e ight)$	Ø
false (e)	$Vars\left(e ight)$	Ø
x = e;	$Vars\left(e ight)$	$\{x\}$
x = M[e];	$Vars\left(e ight)$	$\{x\}$
$M[e_1] = e_2;$	$Vars(e_1) \cup Vars(e_2)$	Ø

A variable x which is not live at u along π is called $\frac{dead}{dead}$ at u along π .

Example:



Then we observe:

	live	dead
0	{ <i>y</i> }	$\{x\}$
1	Ø	$\bigg \{x,y\}$
2	{ <i>y</i> }	$\{x\}$
3	Ø	$\bigg \{x,y\}$

The variable x is live at u if x is live at u along some path to the exit. Otherwise, x is called dead at u.

The variable x is live at u if x is live at u along some path to the exit. Otherwise, x is called dead at u.

Question:

How can the sets of all dead/live variables be computed for every u?

The variable x is live at u if x is live at u along some path to the exit. Otherwise, x is called dead at u.

Question:

How can the sets of all dead/live variables be computed for every u?

Idea:

For every edge $k = (u, _, v)$, define a function $[\![k]\!]^{\sharp}$ which transforms the set of variables that are live at v into the set of variables that are live at v.

Note: Edge transformers go "backwards"!

Let
$$\mathbb{L} = 2^{Vars}$$
.

For
$$k = (_, lab, _)$$
, define $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ by:

$$[\![:]\!]^{\sharp} L = L$$

$$[\![true(e)]\!]^{\sharp} L = [\![false(e)]\!]^{\sharp} L = L \cup Vars(e)$$

$$[\![x = e :]\!]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![x = M[e] :]\!]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![M[e_1] = e_2 :]\!]^{\sharp} L = L \cup Vars(e_1) \cup Vars(e_2)$$

Let
$$\mathbb{L} = 2^{Vars}$$
.

For
$$k = (_, lab, _)$$
, define $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ by:

$$[\![t]]^{\sharp} L = L$$

$$[\![true(e)]]^{\sharp} L = [\![false(e)]]^{\sharp} L = L \cup Vars(e)$$

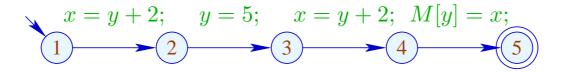
$$[\![x = e;]\!]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

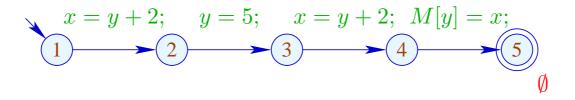
$$[\![x = M[e];]\!]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

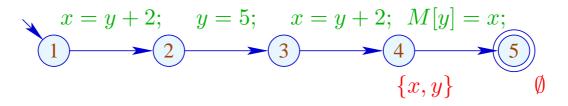
$$[\![M[e_1] = e_2;]\!]^{\sharp} L = L \cup Vars(e_1) \cup Vars(e_2)$$

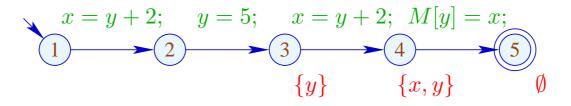
 $[\![k]\!]^{\sharp}$ can again be composed to the effects of $[\![\pi]\!]^{\sharp}$ of paths $\pi = k_1 \dots k_r$ by:

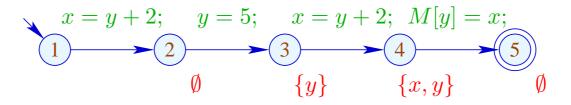
$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_1 \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_r \rrbracket^{\sharp}$$

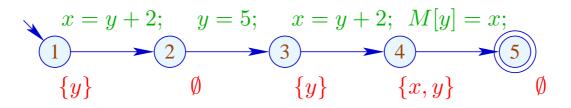












A variable is live at a program point u if there is at least one path from u to program exit on which it is live.

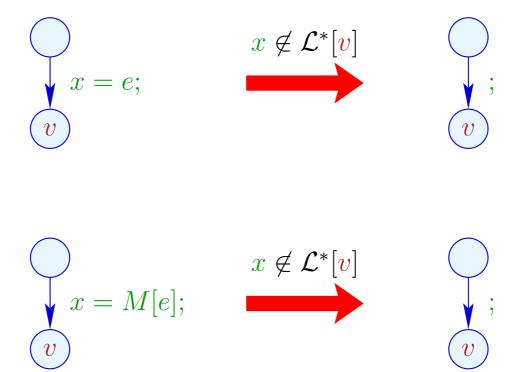
The set of variables which are live at u therefore is given by:

$$\mathcal{L}^*[u] = \bigcup \{ \llbracket \pi \rrbracket^\sharp \emptyset \mid \pi : u \to^* stop \}$$

No variables are assumed to be live at program exit.

As partial order for \mathbb{L} we use $\sqsubseteq = \subseteq$. why? So, the least upper bound is \bigcup . why?

Transformation DE (Dead assignment Elimination):



Correctness Proof:

- \rightarrow Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π , then $[\![\pi]\!]^{\sharp}L$ is the set of variables which are live at the beginning of π .
- → Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant.
- → Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values as in the original program.

Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$egin{array}{lll} \mathcal{L}[stop] &\supseteq &\emptyset \ &\mathcal{L}[oldsymbol{u}] &\supseteq & [\![k]\!]^\sharp \left(\mathcal{L}[oldsymbol{v}]
ight) & k=(oldsymbol{u},_,oldsymbol{v}) & ext{edge} \end{array}$$

- (2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate
- (3) If the exit is (formally) reachable from every program point, then the least solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[\![k]\!]^\sharp$ are distributive

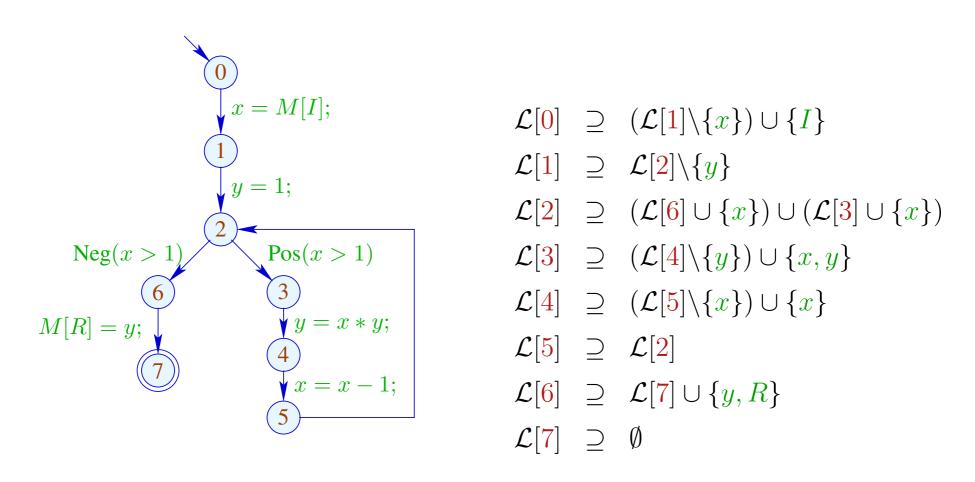
Computation of the sets $\mathcal{L}^*[u]$:

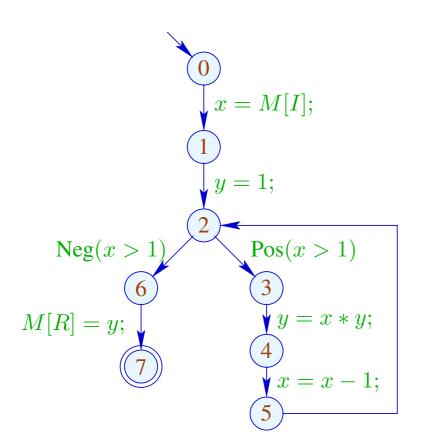
(1) Collecting constraints:

$$egin{array}{lll} \mathcal{L}[stop] &\supseteq &\emptyset \ &\mathcal{L}[oldsymbol{u}] &\supseteq & [\![k]\!]^\sharp \left(\mathcal{L}[oldsymbol{v}]
ight) & k=(oldsymbol{u},_,oldsymbol{v}) & ext{edge} \end{array}$$

- (2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate
- (3) If the exit is (formally) reachable from every program point, then the least solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[\![k]\!]^\sharp$ are distributive.

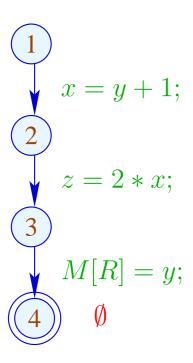
Note: The information is propagated backwards!



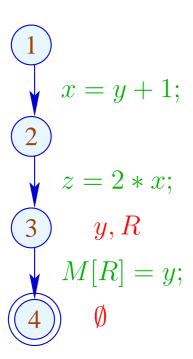


	1	2
7	Ø	
6	$\{y,R\}$	
2	$\{x,y,R\}$	dito
5	$\{x,y,R\}$	
4	$\{x,y,R\}$	
3	$\{x,y,R\}$	
1	$\{x,R\}$	
0	$\{I,R\}$	

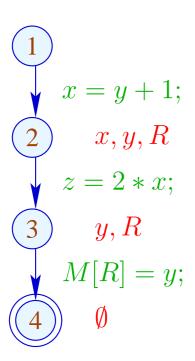
Caveat:



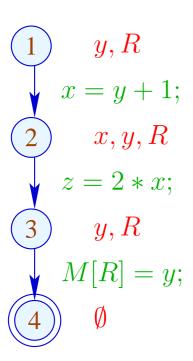
Caveat:



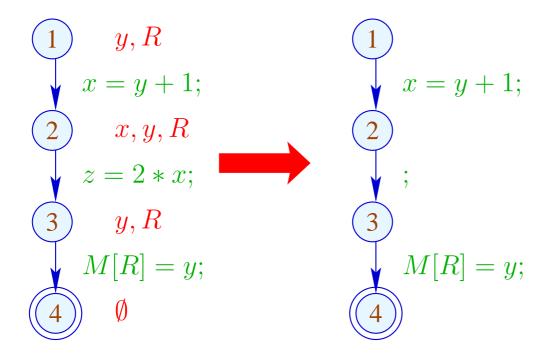
Caveat:



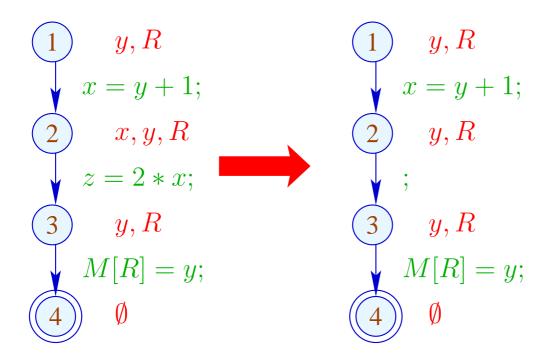
Caveat:



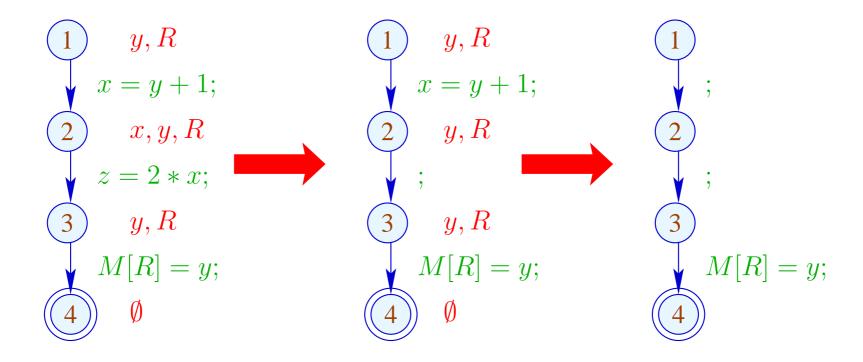
Caveat:



Caveat:



Caveat:



Re-analyzing the program is inconvenient

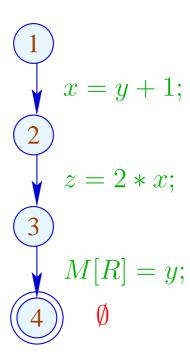
Idea: Analyze true liveness!

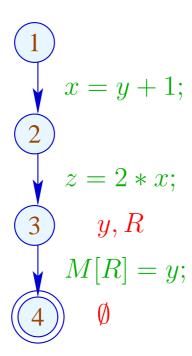
- x is called truly live at u along a path π , either
- if π can be decomposed into $\pi = \pi_1 k \pi_2$ such that:
 - k is a true use of x;
 - π_1 does not contain any definition of x.

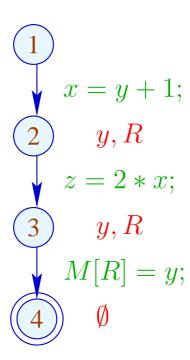
The set of truly used variables at an edge $k = (_, lab, v)$ is defined as:

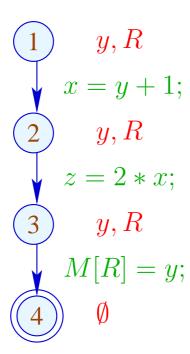
lab	truly used	
;	Ø	
$ \operatorname{true}(e) $	$Vars\left(e\right)$	
false (e)	$Vars\left(e ight)$	
x = e;	$Vars\left(e\right) \qquad {*}$	
x = M[e];	$Vars\left(e\right) \qquad {*}$	
$M[e_1] = e_2;$	$Vars(e_1) \cup Vars(e_2)$	

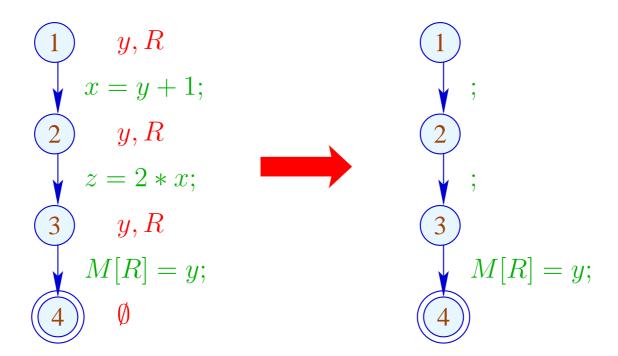
(*) – given that x is truly live at v











The Effects of Edges:

$$[\![:]\!]^{\sharp} L = L$$

$$[\![true(e)]\!]^{\sharp} L = [\![false(e)]\!]^{\sharp} L = L \cup Vars(e)$$

$$[\![x = e :]\!]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![x = M[e] :]\!]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![M[e_1] = e_2 :]\!]^{\sharp} L = L \cup Vars(e_1) \cup Vars(e_2)$$

The Effects of Edges:

$$[\![t]]^{\sharp} L = L$$

$$[\![true(e)]]^{\sharp} L = [\![false(e)]]^{\sharp} L = L \cup Vars(e)$$

$$[\![x = e;]\!]^{\sharp} L = (L \setminus \{x\}) \cup (x \in L)? Vars(e) : \emptyset$$

$$[\![x = M[e];]\!]^{\sharp} L = (L \setminus \{x\}) \cup (x \in L)? Vars(e) : \emptyset$$

$$[\![M[e_1] = e_2;]\!]^{\sharp} L = L \cup Vars(e_1) \cup Vars(e_2)$$

Note:

- The effects of edges for truly live variables are more complicated than for live variables
- Nonetheless, they are distributive !!

Note:

- The effects of edges for truly live variables are more complicated than for live variables
- Nonetheless, they are distributive !!

To see this, consider for $\mathbb{D}=2^U$, $fy=(u\in y)?b:\emptyset$ We verify:

$$f(y_1 \cup y_2) = (u \in y_1 \cup y_2)?b: \emptyset$$

$$= (u \in y_1 \lor u \in y_2)?b: \emptyset$$

$$= (u \in y_1)?b: \emptyset \cup (u \in y_2)?b: \emptyset$$

$$= f y_1 \cup f y_2$$

Note:

- The effects of edges for truly live variables are more complicated than for live variables
- Nonetheless, they are distributive !!

To see this, consider for $\mathbb{D}=2^U$, $fy=(u\in y)?b:\emptyset$ We verify:

$$f(y_1 \cup y_2) = (u \in y_1 \cup y_2)?b: \emptyset$$

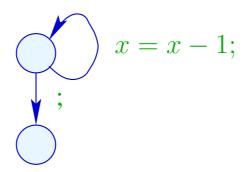
$$= (u \in y_1 \lor u \in y_2)?b: \emptyset$$

$$= (u \in y_1)?b: \emptyset \cup (u \in y_2)?b: \emptyset$$

$$= f y_1 \cup f y_2$$

⇒ the constraint system yields the MOP

• True liveness detects more superfluous assignments than repeated liveness !!!



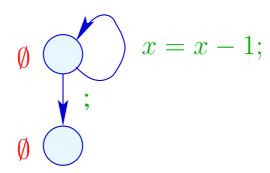
• True liveness detects more superfluous assignments than repeated liveness!!!

Liveness:

$$\{x\} \qquad \qquad x = x - 1;$$

• True liveness detects more superfluous assignments than repeated liveness!!!

True Liveness:



7 Interval Analysis

Constant propagation attempts to determine values of variables.

However, variables may take on several values during program execution.

So, *the value* of a variable will often be unknown.

Next attempt: determine an interval enclosing all possible values that a variable may take on during program execution at a program point.

Example:

```
for (i=0; i<42; i++)

if (0 \le i \land i < 42) \{

A_1 = A + i;

M[A_1] = i;

}

// A start address of an array

// if-statement does array-bounds check
```

Obviously, the inner check is superfluous.

Idea 1:

Determine for every variable x the tightest possible interval of potential values.

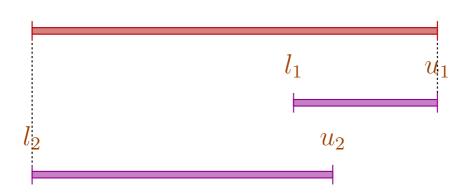
Abstract domain:

$$\mathbb{I} = \{[l, u] \mid l \in \mathbb{Z} \cup \{-\infty\}, u \in \mathbb{Z} \cup \{+\infty\}, l \le u\}$$

Partial order:

Thus:

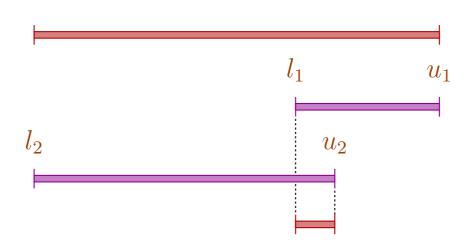
$$[l_1, u_1] \sqcup [l_2, u_2] = [l_1 \sqcap l_2, u_1 \sqcup u_2]$$



Thus:

$$[l_1, u_1] \sqcup [l_2, u_2] = [l_1 \sqcap l_2, u_1 \sqcup u_2]$$

 $[l_1, u_1] \sqcap [l_2, u_2] = [l_1 \sqcup l_2, u_1 \sqcap u_2]$ whenever $(l_1 \sqcup l_2) \leq (u_1 \sqcap u_2)$



Caveat:

- \rightarrow I is not a complete lattice,
- \rightarrow l has infinite ascending chains, e.g.,

$$[0,0] \sqsubset [0,1] \sqsubset [-1,1] \sqsubset [-1,2] \sqsubset \dots$$

Caveat:

- \rightarrow I is not a complete lattice,
- \rightarrow l has infinite ascending chains, e.g.,

$$[0,0] \sqsubset [0,1] \sqsubset [-1,1] \sqsubset [-1,2] \sqsubset \dots$$

Description Relation:

$$z \Delta [l, u]$$
 iff $l \le z \le u$

Concretization:

$$\gamma [l, u] = \{ z \in \mathbb{Z} \mid l \le z \le u \}$$

Example:

$$\gamma [0,7] = \{0,\ldots,7\}$$

 $\gamma [0,\infty] = \{0,1,2,\ldots,\}$

Computing with intervals: Interval Arithmetic.

Addition:

$$[l_1, u_1]$$
 + $^{\sharp}$ $[l_2, u_2]$ = $[l_1 + l_2, u_1 + u_2]$ where $-\infty +_{-}$ = $-\infty$ $+\infty +_{-}$ = $+\infty$ // $-\infty + \infty$ cannot occur

Negation:

$$-^{\sharp} [l, u] = [-u, -l]$$

Multiplication:

$$[l_1, u_1] *^{\sharp} [l_2, u_2] = [a, b]$$
 where $a = l_1 l_2 \sqcap l_1 u_2 \sqcap u_1 l_2 \sqcap u_1 u_2$ $b = l_1 l_2 \sqcup l_1 u_2 \sqcup u_1 l_2 \sqcup u_1 u_2$

Example:

$$[0,2] *^{\sharp} [3,4] = [0,8]$$

$$[-1,2] *^{\sharp} [3,4] = [-4,8]$$

$$[-1,2] *^{\sharp} [-3,4] = [-6,8]$$

$$[-1,2] *^{\sharp} [-4,-3] = [-8,4]$$

Division: $[l_1, u_1] /^{\sharp} [l_2, u_2] = [a, b]$

• If 0 is not contained in the interval of the denominator, then:

$$a = l_1/l_2 \sqcap l_1/u_2 \sqcap u_1/l_2 \sqcap u_1/u_2$$

$$b = l_1/l_2 \sqcup l_1/u_2 \sqcup u_1/l_2 \sqcup u_1/u_2$$

• If: $l_2 \le 0 \le u_2$, we define:

$$[a,b] = [-\infty, +\infty]$$

Equality:

$$[l_1, u_1] ==^{\sharp} [l_2, u_2] = \begin{cases} true & \text{if } l_1 = u_1 = l_2 = u_2 \\ false & \text{if } u_1 < l_2 \lor u_2 < l_1 \\ \top & \text{otherwise} \end{cases}$$

Equality:

$$[l_1, u_1] ==^{\sharp} [l_2, u_2] = \begin{cases} true & \text{if} \quad l_1 = u_1 = l_2 = u_2 \\ false & \text{if} \quad u_1 < l_2 \lor u_2 < l_1 \\ \top & \text{otherwise} \end{cases}$$

Example:

$$[42, 42] = =^{\sharp} [42, 42] = true$$

 $[0, 7] = =^{\sharp} [0, 7] = \top$
 $[1, 2] = =^{\sharp} [3, 4] = false$

Less:

$$[l_1, u_1] <^{\sharp} [l_2, u_2] = \begin{cases} true & \text{if } u_1 < l_2 \\ false & \text{if } u_2 \le l_1 \\ \top & \text{otherwise} \end{cases}$$

Less:

$$[l_1, u_1] <^{\sharp} [l_2, u_2] = \left\{ egin{array}{ll} true & ext{if} & u_1 < l_2 \ false & ext{if} & u_2 \leq l_1 \ \end{array}
ight.$$
 $ext{$ o$ otherwise}$

Example:

$$[1,2] <^{\sharp} [9,42] = true$$

 $[0,7] <^{\sharp} [0,7] = \top$
 $[3,4] <^{\sharp} [1,2] = false$

By means of \(\begin{aligned} \text{we construct the complete lattice:} \end{aligned} \)

$$\mathbb{D}_{\mathbb{I}} = (Vars \to \mathbb{I})_{\perp}$$

Description Relation:

$$\rho \Delta D$$
 iff $D \neq \bot \land \forall x \in Vars : (\rho x) \Delta (D x)$

The abstract evaluation of expressions is defined analogously to constant propagation. We have:

$$(\llbracket e \rrbracket \ \rho) \ \Delta \ (\llbracket e \rrbracket^{\sharp} \ D)$$
 whenever $\rho \ \Delta \ D$

The Effects of Edges:

... given that $D \neq \bot$

Better Exploitation of Conditions:

$$[\![\operatorname{Pos}\,(e)]\!]^{\sharp} D = \begin{cases} \bot & \text{if} \quad false = [\![e]\!]^{\sharp} D \\ D_{1} & \text{otherwise} \end{cases}$$

where:

$$D_1 = \begin{cases}
 D \oplus \{x \mapsto (Dx) \sqcap (\llbracket e_1 \rrbracket^{\sharp} D)\} & \text{if } e \equiv x == e_1 \\
 D \oplus \{x \mapsto (Dx) \sqcap [-\infty, u]\} & \text{if } e \equiv x \leq e_1, \llbracket e_1 \rrbracket^{\sharp} D = [_, u] \\
 D \oplus \{x \mapsto (Dx) \sqcap [l, \infty]\} & \text{if } e \equiv x \geq e_1, \llbracket e_1 \rrbracket^{\sharp} D = [l, _]
 \end{cases}$$

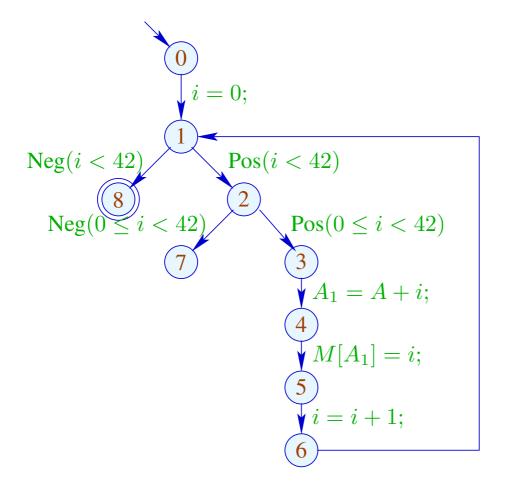
Better Exploitation of Conditions (cont.):

$$[\![\operatorname{Neg}(e)]\!]^{\sharp}D = \begin{cases} \bot & \text{if} \quad false \not\sqsubseteq [\![e]\!]^{\sharp}D\\ D_{1} & \text{otherwise} \end{cases}$$

where:

$$D_1 = \begin{cases}
 D \oplus \{x \mapsto (Dx) \sqcap (\llbracket e_1 \rrbracket^{\sharp} D)\} & \text{if } e \equiv x \neq e_1 \\
 D \oplus \{x \mapsto (Dx) \sqcap [-\infty, u]\} & \text{if } e \equiv x > e_1, \llbracket e_1 \rrbracket^{\sharp} D = [_, u] \\
 D \oplus \{x \mapsto (Dx) \sqcap [l, \infty]\} & \text{if } e \equiv x < e_1, \llbracket e_1 \rrbracket^{\sharp} D = [l, _]
 \end{cases}$$

Example:



	i				
	l	u			
0	$-\infty$	$+\infty$			
1	0	42			
2	0	41			
3	0	41			
4	0	41			
5	0	41			
6	1	42			
7		L			
8	42	42			

Problem:

- → The solution can be computed with RR-iteration after about 42 rounds.
- → On some programs, iteration may never terminate.

Idea: Widening

Accelerate the iteration — at the cost of precision

Formalization of the Approach:

Let
$$x_i \supseteq f_i(x_1, \dots, x_n)$$
, $i = 1, \dots, n$ (1)

denote a system of constraints over

Define an accumulating iteration:

$$x_i = x_i \sqcup f_i(x_1, \dots, x_n) , \quad i = 1, \dots, n$$
 (2)

We obviously have:

- (a) \underline{x} is a solution of (1) iff \underline{x} is a solution of (2).
- (b) The function $G: \mathbb{D}^n \to \mathbb{D}^n$ with $G(x_1, \dots, x_n) = (y_1, \dots, y_n)$, $y_i = x_i \sqcup f_i(x_1, \dots, x_n)$ is increasing, i.e., $\underline{x} \sqsubseteq G\underline{x}$ for all $\underline{x} \in \mathbb{D}^n$.

(c) The sequence $G^k \perp 1$, $k \geq 0$, is an ascending chain:

$$\perp \sqsubseteq G \perp \sqsubseteq \ldots \sqsubseteq G^k \perp \sqsubseteq \ldots$$

- (d) If $G^k \perp = G^{k+1} \perp = y$, then y is a solution of (1).
- (e) If D has infinite strictly ascending chains, then (d) is not yet sufficient ...

but: we could consider the modified system of equations:

$$x_i = x_i \sqcup f_i(x_1, \dots, x_n) , \quad i = 1, \dots, n$$
(3)

for a binary operation widening:

$$\sqcup : \mathbb{D}^2 \to \mathbb{D}$$
 with $v_1 \sqcup v_2 \sqsubseteq v_1 \sqcup v_2$

(RR)-iteration for (3) still will compute a solution of (1)

... for Interval Analysis:

- The complete lattice is: $\mathbb{D}_{\mathbb{I}} = (Vars \to \mathbb{I})_{\perp}$
- the widening \sqcup is defined by:

$$\bot \sqcup D = D \sqcup \bot = D \qquad \text{and for} \quad D_1 \neq \bot \neq D_2:$$

$$(D_1 \sqcup D_2) x = (D_1 x) \sqcup (D_2 x) \quad \text{where}$$

$$[l_1, u_1] \sqcup [l_2, u_2] = [l, u] \quad \text{with}$$

$$l = \begin{cases} l_1 & \text{if} \quad l_1 \leq l_2 \\ -\infty & \text{otherwise} \end{cases}$$

$$u = \begin{cases} u_1 & \text{if} \quad u_1 \geq u_2 \\ +\infty & \text{otherwise} \end{cases}$$

 $\implies \sqcup$ is not commutative !!!

Example:

$$[0, 2] \sqcup [1, 2] = [0, 2]$$

 $[1, 2] \sqcup [0, 2] = [-\infty, 2]$
 $[1, 5] \sqcup [3, 7] = [1, +\infty]$

- → Widening returns larger values more quickly.
- → It should be constructed in such a way that termination of iteration is guaranteed.
- → For interval analysis, widening bounds the number of iterations by:

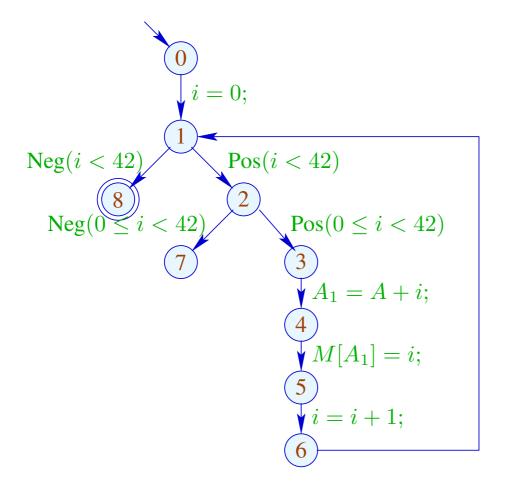
$$\#points \cdot (1 + 2 \cdot \#Vars)$$

Conclusion:

- In order to determine a solution of (1) over a complete lattice with infinite ascending chains, we define a suitable widening and then solve (3)
- Caveat: The construction of suitable widenings is a dark art !!!
 Often

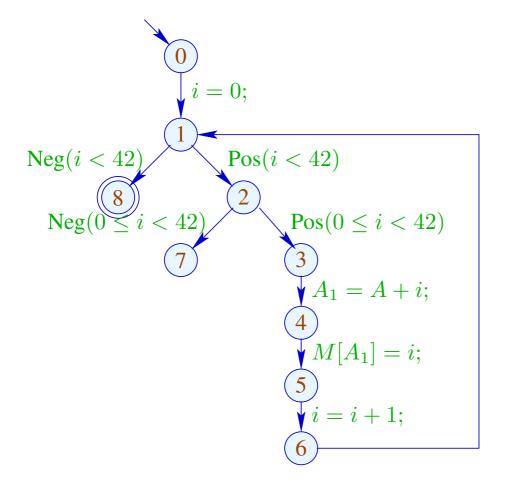
 is chosen dynamically during iteration such that
 - → the abstract values do not get too complicated;
 - → the number of updates remains bounded ...

Our Example:



	1				
	l u				
0	$-\infty$	$+\infty$			
1	0	0			
2	0	0			
3	0	0			
4	0	0			
5	0	0			
6	1	1			
7					
8					

Our Example:



	1		2		3	
	l	$oxed{l} oxed{u} oxed{u}$		u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$		
1	0	0	0	$+\infty$		
2	0	0	0	$+\infty$		
3	0	0	0	$+\infty$		
4	0	0	0	$+\infty$	di	ito
5	0	0	0	$+\infty$		
6	1	$\mid 1 \mid$	1	$+\infty$		
7			42	$+\infty$		
8	上		42	$+\infty$		

... obviously, the result is disappointing.

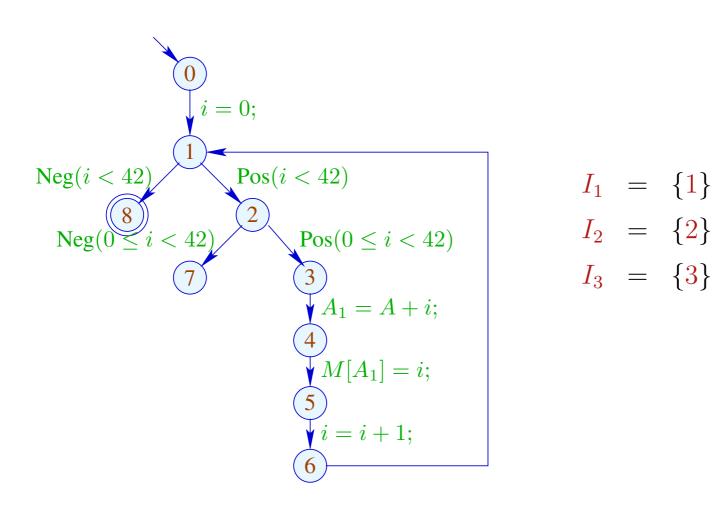
Idea 2:

In fact, acceleration with \sqcup need only be applied at sufficiently many places!

A set I is a loop separator, if every loop contains at least one point from I

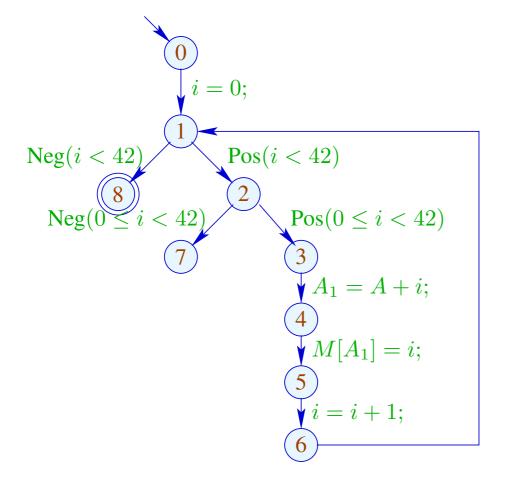
If we apply widening only at program points from such a set I, then RR-iteration still terminates!!!

In our Example:



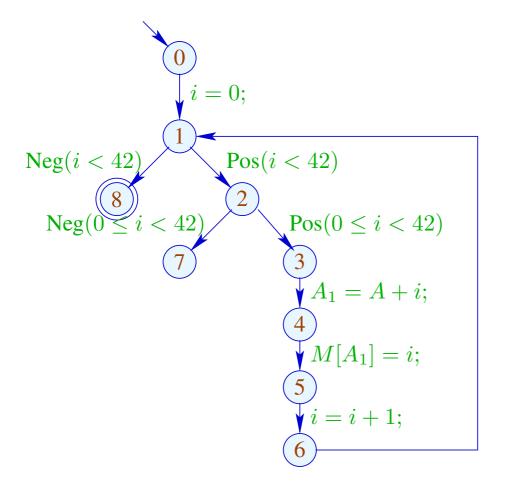
or:

The Analysis with $I = \{1\}$:



	1		2		3	
	l	u	l	u	l	$\mid u \mid$
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$		
1	0	0	0	$+\infty$		
2	0	0	0	41		
3	0	0	0	41		
4	0	0	0	41	di	ito
5	0	0	0	41		
6	1	1	1	42		
7		L		L		
8		L	42	$+\infty$		

The Analysis with $I = \{2\}$:



	1		2			3	4
	l	u	l	u	l	u	
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	
1	0	0	0	1	0	42	
2	0	0	0	$+\infty$	0	$+\infty$	
3	0	0	0	41	0	41	
4	0	0	0	41	0	41	dito
5	0	0	0	41	0	41	
6	1	1	1	42	1	42	
7	_	L	42	$+\infty$	42	$+\infty$	
8			_	Ĺ	42	42	

Discussion:

- Both runs of the analysis determine interesting information,
- The run with $I = \{2\}$ proves that always i = 42 after leaving the loop.
- Only the run with $I = \{1\}$ finds, however, that the outer check makes the inner check superfluous.

How can we find a suitable loop separator I???

Idea 3: Narrowing

Let \underline{x} denote any solution of (1), i.e.,

$$x_i \supseteq f_i \underline{x}$$
, $i = 1, \dots, n$

Then for monotonic f_i ,

$$\underline{x} \supseteq F\underline{x} \supseteq F^2\underline{x} \supseteq \ldots \supseteq F^k\underline{x} \supseteq \ldots$$

// Narrowing Iteration

Idea 3: Narrowing

Let \underline{x} denote any solution of (1), i.e.,

$$x_i \supseteq f_i \underline{x}$$
, $i = 1, \ldots, n$

Then for monotonic f_i ,

$$\underline{x} \supseteq F\underline{x} \supseteq F^2\underline{x} \supseteq \ldots \supseteq F^k\underline{x} \supseteq \ldots$$

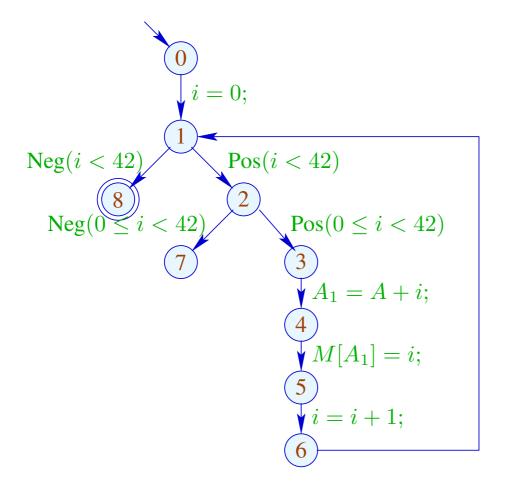
// Narrowing Iteration

Every tuple $F^k \underline{x}$ is a solution of (1)

Termination is no problem anymore: we stop whenever we want

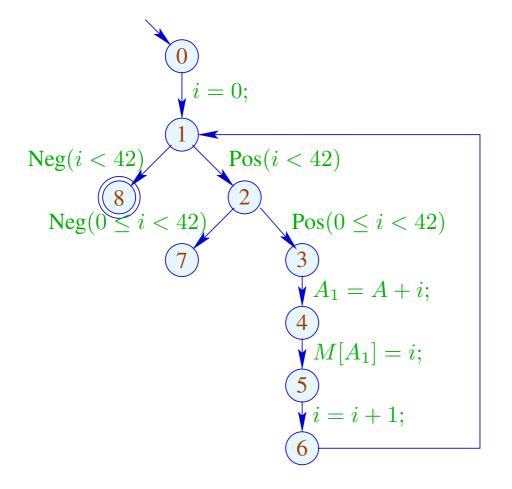
// The same also holds for RR-iteration.

Narrowing Iteration in the Example:



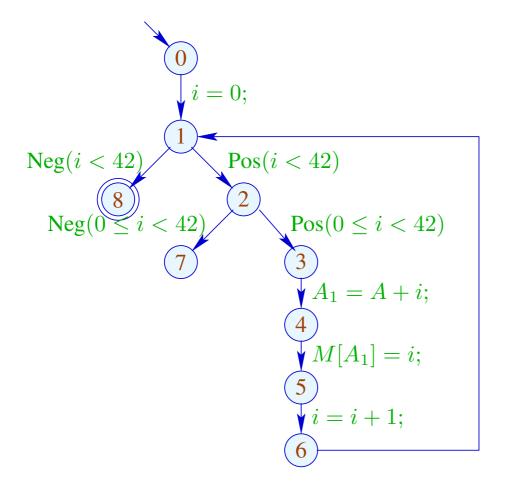
	0				
	l u				
0	$-\infty$	$+\infty$			
1	0	$+\infty$			
2	0	$+\infty$			
3	0	$+\infty$			
4	0	$+\infty$			
5	0	$+\infty$			
6	1	$+\infty$			
7	42	$+\infty$			
8	42	$+\infty$			

Narrowing Iteration in the Example:



	()	1		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		l	u	
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	
1	0	$+\infty$	0	$+\infty$	
2	0	$+\infty$	0	41	
3	0	$+\infty$	0	41	
4	0	$+\infty$	0	41	
5	0	$+\infty$	0	41	
6	1	$+\infty$	1 42		
7	42	$+\infty$			
8	42	$+\infty$	$42 + \infty$		

Narrowing Iteration in the Example:



	0		1		2	
	l	u	l	$oxed{u}$	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$
1	0	$+\infty$	0	$+\infty$	0	42
2	0	$+\infty$	0	41	0	41
3	0	$+\infty$	0	41	0	41
4	0	$+\infty$	0	41	0	41
5	0	$+\infty$	0	41	0	41
6	1	$+\infty$	1	42	1	42
7	42	$+\infty$				Ļ
8	42	$+\infty$	42	$+\infty$	42	42

Discussion:

- \rightarrow We start with a safe approximation.
- \rightarrow We find that the inner check is redundant :-)
- \rightarrow We find that at exit from the loop, always i = 42
- → It was not necessary to construct an optimal loop separator

Last Question: