Pentagons

Based on Logozzo & Fähndrich. Pentagons: [...] Science of Computer Programming 75(9) 2010

Sebastian Hack

Compiler Construction W2015

Saarland University, Computer Science

Motivation

Java requires to throw an exception if the array access is out of bounds.

Motivation

So the code that is really executed is:

```
int binarySearch(int[] array, int value) {
    int l = 0, u = array.length - 1;
    while (1 <= u) {
        int i = (1 + u) / 2;
        int v;
        if (i < 0 \mid | i > = array.length) throw new ...
        else v = array[i];
        if (v == value) return i;
        if (v < value) l = i + 1;</pre>
        else
                      u = i - 1;
    return ~1;
}
```

- Apparently, the condition is always true and the compiler should eliminate the bounds check and remove the throw.
- lacksquare With interval analysis we only get the bound $i\in[0,\infty]$
- Domain not powerful enough to provide relational information
 i < array.length

Strict Upper Bounds Domain (sub)

- \blacksquare Represent strict inequalities, like x < y
- Domain: $Var \rightarrow \mathcal{P}(Var)$ Map each x to all variables that are strictly greater than x
- Concretization: $\gamma_{\mathsf{sub}} : s \mapsto \{\mathsf{state} \ \sigma \mid \forall \mathtt{x}\mathtt{y} : \mathtt{y} \in s(\mathtt{x}) \Rightarrow \sigma(\mathtt{x}) < \sigma(\mathtt{y})\}$

Strict Upper Bounds Domain (sub)

- \blacksquare Represent strict inequalities, like x < y
- Domain: $Var \rightarrow \mathcal{P}(Var)$ Map each x to all variables that are strictly greater than x
- Concretization: $\gamma_{\mathsf{sub}} : s \mapsto \{\mathsf{state} \ \sigma \mid \forall \mathtt{xy} : \mathtt{y} \in s(\mathtt{x}) \Rightarrow \sigma(\mathtt{x}) < \sigma(\mathtt{y})\}$
- Join: $s \sqcup_{\mathsf{sub}} t : \iff \lambda x. (s(x) \cap t(x))$ implies ordering via $a \sqsubseteq_{\mathsf{sub}} b \iff a \sqcup_{\mathsf{sub}} b = b$
- $\blacksquare \ \top = \lambda x. \emptyset \quad \text{and} \quad \bot = \lambda x. Var$

Closures

Because < is transitive, there are many elements in sub that concretize to the same set of states, e.g. consider

$$s_1 = [x \mapsto \{y\}, y \mapsto \{z\}]$$

$$s_2 = [x \mapsto \{y, z\}, y \mapsto \{z\}]$$

for which we have $\gamma(s_1) = \gamma(s_2)$

■ When joining, it actually makes a difference which one we have:

$$s_1 \cup [x \mapsto \{z\}] = \top$$

$$s_2 \cup [x \mapsto \{z\}] = [x \mapsto \{z\}]$$

- One can show that γ_{sub} preserves meets and therefore, for all s, s' with $\gamma(s) = \gamma(s')$ we have $\gamma(s) = \gamma(s) \cap \gamma(s') = \gamma(s \sqcap_{\mathsf{sub}} s')$
- Hence, there is a best abstraction $\alpha(c)$ for a given set of concrete states $c = \gamma(s)$

$$(\alpha \circ \gamma)(s) = \bigcap \{s' \mid \gamma(s') = \gamma(s)\}$$

Closures

- \blacksquare To make the join most precise one could compute the closure $\alpha\circ\gamma$ and join with the best abstractions
- The closure operator can in practice be expensive: In sub one has to compute the transitive closure of the relation represented by an abstract element
- In practice other operations that overapproximate the join are imaginable.

Reduced Product

- Using sub without intervals does not help in proving the array access in bounds in our example. Information about constants missing
- Hence: Use both analyses: pentagons = $sub \times intervals$

Reduced Product

■ In the product, there are typically multiple abstract elements that are concretized to the same value:

$$\gamma((\{x \mapsto [0, 100], y \mapsto [0, 50]\}, \{x < y\})) = \gamma((\{x \mapsto [0, 49], y \mapsto [1, 50]\}, \{x < y\}))$$

■ Therefore, one also gets a closure operator that gives the best abstraction in sub × intervals for a given abstraction:

$$\begin{split} \langle b^*, s^* \rangle &\mapsto \langle b, s \rangle \\ b^* &= \prod_{\{\mathbf{x} < \mathbf{y}\} \in s} [\![\mathbf{x} < \mathbf{y}]\!]^\sharp(b) \\ s^* &= \lambda \mathbf{x} . s(\mathbf{x}) \cup \{ \mathbf{y} \in \textit{Var} \mid \mathbf{x}^u < \mathbf{y}^\ell \} \qquad \text{with } b(z) = [z^\ell, z^u] \end{split}$$

Practice

- Applying the closure operator might be expensive. In pentagon, it is $O(Var^2)$
- To get the best precision, one has to do it before every operation: join, application of abstract transformer.
- Hence, in practice, one uses
 - A less precise but more efficient join,
 e.g. in Pentagons, ignore sub information for interval join.
 - Modified abstract transformers, that integrate information from both domains, intervals and sub. For example, consider subtraction with:

$$\begin{split} \llbracket \mathbf{r} \leftarrow \mathbf{x} - \mathbf{y} \rrbracket^{\sharp} \langle b, s \rangle &= \langle b[\mathbf{r} \mapsto b_r], s[\mathbf{r} \mapsto b_s] \rangle \quad \text{with} \\ b_r &= \llbracket \mathbf{x} - \mathbf{y} \rrbracket^{\sharp}_{\mathsf{intv}} \cap ((\mathbf{y} < \mathbf{x}) \in s ? [1, \infty] : \top_{\mathsf{intv}}) \\ s_r &= \mathbf{y}^{\ell} > 0 ? \{\mathbf{x}\} \cup s(\mathbf{x}) : \emptyset \end{split}$$