Pentagons

Based on Logozzo & Fahndrich. Pentagons: [...]
Science of Computer Programming 75(9) 2010

Sebastian Hack

Compiler Construction
W2015

Saarland University, Computer Science

Motivation

int binarySearch(int[] array, int value) {
int 1 = 0, u = array.length - 1;
while (1 <= u) {

int i = (1 + u) / 2;

int v = arrayl[il;

if (v == value) return 1i;
if (v < value) 1 = i + 1;
else u=1i - 1;

}
return “1;

}

Java requires to throw an exception if the array access is out of bounds.

Motivation
So the code that is really executed is:
int binarySearch(int[] array, int value) {
int 1 = 0, u = array.length - 1;
while (1 <= u) {
int i = (1 + u) / 2;

int v;

if (1 < 0 || i >= array.length) throw new
else v = arrayl[i];

if (v == value) return i;

if (v < value) 1 =i + 1;

else u=1i - 1;

}

return ~1;

m Apparently, the condition is always true and the compiler should
eliminate the bounds check and remove the throw.

m With interval analysis we only get the bound i € [0, o0]

® Domain not powerful enough to provide relational information
i < array.length

Strict Upper Bounds Domain (sub)

B Represent strict inequalities, like x <y

m Domain: Var — P(Var)
Map each x to all variables that are strictly greater than x

m Concretization: gup : s — {state o | Vxy : y € s5(x) = o(x) < o(y)}

Strict Upper Bounds Domain (sub)

Represent strict inequalities, like x <y

m Domain: Var — P(Var)
Map each x to all variables that are strictly greater than x

m Concretization: gup : s — {state o | Vxy : y € s5(x) = o(x) < o(y)}

Join: s Ugyp t 1 <= Ax.(s(x) N t(x))
implies ordering via a Cg,p, b < allgp, b= 0>b

BT =)x0 and 1 = Xx.Var

Closures

m Because < is transitive, there are many elements in sub that
concretize to the same set of states, e.g. consider

=[x — {v},y = {z}]
s2 = [x = {y,z},y = {z}]
for which we have v(s1) = v(s2)
® When joining, it actually makes a difference which one we have:
siU[x— {z}] =
s Ux = {z}] =[x+ {z}]
m One can show that g}, preserves meets and therefore, for all s, s’ with
7(s) = (s') we have y(s) = (s) N (s') = (s Meub 5)

m Hence, there is a best abstraction a(c) for a given set of concrete
states ¢ = 7y(s)

(@o)(s) =] [{s"[7(s) = 7(s)}

Closures

m To make the join most precise one could compute the closure a0 %
and join with the best abstractions

m The closure operator can in practice be expensive:
In sub one has to compute the transitive closure of the relation
represented by an abstract element

m In practice other operations that overapproximate the join are
imaginable.

Reduced Product

m Using sub without intervals does not help in proving the array access
in bounds in our example. Information about constants missing

m Hence: Use both analyses: pentagons = sub x intervals

Reduced Product

m In the product, there are typically multiple abstract elements that are
concretized to the same value:

Y(({x [0,100], y — [0,50]}, {x < y}))
= ’7(<{X = [0749]’)/ = [1750]}7 {X < y}>)

m Therefore, one also gets a closure operator that gives the best
abstraction in sub x intervals for a given abstraction:

(b",5%) 1> (b, s)
b= [] [x<yF(b)

{x<y}es
s* = Xxs(x)U{y € Var | x" <y} with b(z) = [2%, 2]

Practice

m Applying the closure operator might be expensive.
In pentagon, it is O(Var?)

m To get the best precision, one has to do it before every operation:
join, application of abstract transformer.

m Hence, in practice, one uses

— A less precise but more efficient join,
e.g. in Pentagons, ignore sub information for interval join.

- Modified abstract transformers, that integrate information from both
domains, intervals and sub. For example, consider subtraction with:

[r < x —y]*(b,s) = (b[r — b,],s[r — bs]) with

by =[x —y]]iﬁntv N((y<x)es?[l,00]: Tinty)
ss=y">0?{x}Us(x):0

