
Pentagons
Based on Logozzo & Fähndrich. Pentagons: [...]
Science of Computer Programming 75(9) 2010

Sebastian Hack

Compiler Construction
W2015

Saarland University, Computer Science

1

Motivation

int binarySearch(int[] array , int value) {

int l = 0, u = array.length - 1;

while (l <= u) {

int i = (l + u) / 2;

int v = array[i];

if (v == value) return i;

if (v < value) l = i + 1;

else u = i - 1;

}

return ~l;

}

Java requires to throw an exception if the array access is out of bounds.

2

Motivation
So the code that is really executed is:

int binarySearch(int[] array , int value) {

int l = 0, u = array.length - 1;

while (l <= u) {

int i = (l + u) / 2;

int v;

if (i < 0 || i >= array.length) throw new ...

else v = array[i];

if (v == value) return i;

if (v < value) l = i + 1;

else u = i - 1;

}

return ~l;

}

� Apparently, the condition is always true and the compiler should
eliminate the bounds check and remove the throw.

� With interval analysis we only get the bound i ∈ [0,∞]

� Domain not powerful enough to provide relational information
i < array.length

3

Strict Upper Bounds Domain (sub)

� Represent strict inequalities, like x < y

� Domain: Var → P(Var)
Map each x to all variables that are strictly greater than x

� Concretization: γsub : s 7→ {state σ | ∀xy : y ∈ s(x)⇒ σ(x) < σ(y)}

4

Strict Upper Bounds Domain (sub)

� Represent strict inequalities, like x < y

� Domain: Var → P(Var)
Map each x to all variables that are strictly greater than x

� Concretization: γsub : s 7→ {state σ | ∀xy : y ∈ s(x)⇒ σ(x) < σ(y)}

� Join: s ⊔sub t :⇐⇒ λx.(s(x) ∩ t(x))
implies ordering via a ⊑sub b ⇐⇒ a ⊔sub b = b

� ⊤ = λx.∅ and ⊥ = λx.Var

4

Closures

� Because < is transitive, there are many elements in sub that
concretize to the same set of states, e.g. consider

s1 = [x 7→ {y}, y 7→ {z}]

s2 = [x 7→ {y, z}, y 7→ {z}]

for which we have γ(s1) = γ(s2)

� When joining, it actually makes a difference which one we have:

s1 ∪ [x 7→ {z}] = ⊤

s2 ∪ [x 7→ {z}] = [x 7→ {z}]

� One can show that γsub preserves meets and therefore, for all s, s ′ with
γ(s) = γ(s ′) we have γ(s) = γ(s) ∩ γ(s ′) = γ(s ⊓sub s

′)

� Hence, there is a best abstraction α(c) for a given set of concrete
states c = γ(s)

(α ◦ γ)(s) =
l
{s ′ | γ(s ′) = γ(s)}

5

Closures

� To make the join most precise one could compute the closure α ◦ γ
and join with the best abstractions

� The closure operator can in practice be expensive:
In sub one has to compute the transitive closure of the relation
represented by an abstract element

� In practice other operations that overapproximate the join are
imaginable.

6

Reduced Product

� Using sub without intervals does not help in proving the array access
in bounds in our example. Information about constants missing

� Hence: Use both analyses: pentagons = sub× intervals

7

Reduced Product

� In the product, there are typically multiple abstract elements that are
concretized to the same value:

γ(〈{x 7→ [0, 100], y 7→ [0, 50]}, {x < y}〉)
= γ(〈{x 7→ [0, 49], y 7→ [1, 50]}, {x < y}〉)

� Therefore, one also gets a closure operator that gives the best
abstraction in sub× intervals for a given abstraction:

〈b∗, s∗〉 7→ 〈b, s〉

b∗ =
l

{x<y}∈s

Jx < yK♯(b)

s∗ = λx.s(x) ∪ {y ∈ Var | xu < yℓ} with b(z) = [zℓ, zu]

8

Practice

� Applying the closure operator might be expensive.
In pentagon, it is O(Var

2)

� To get the best precision, one has to do it before every operation:
join, application of abstract transformer.

� Hence, in practice, one uses

– A less precise but more efficient join,

e.g. in Pentagons, ignore sub information for interval join.

– Modified abstract transformers, that integrate information from both

domains, intervals and sub. For example, consider subtraction with:

Jr← x− yK♯〈b, s〉 = 〈b[r 7→ br], s[r 7→ bs]〉 with

br = Jx− yK♯
intv
∩ ((y < x) ∈ s ? [1,∞] : ⊤intv)

sr = y
ℓ > 0 ? {x} ∪ s(x) : ∅

9

