Bottom-Up Syntax Analysis

Reinhard Wilhelm, Sebastian Hack, Mooly Sagiv Saarland University, Tel Aviv University

W2015

Saarland University, Computer Science

Subjects

- Functionality and Method
- Example Parsers
- Derivation of a Parser
- Conflicts
- *LR*(*k*)–Grammars
- *LR*(1)−Parser Generation
- Bison

Bottom-Up Syntax Analysis

Input: A stream of symbols (tokens)

Output: A syntax tree or error

Method: until input consumed or error do

- shift next symbol or reduce by some production
- decide what to do by looking k symbols ahead

Properties:

- Constructs the syntax tree in a bottom-up manner
 - Finds the rightmost derivation (in reversed order)
 - Reports error as soon as the already read part of the input is not a prefix of a program (valid prefix property)

Parsing *aabb* in the grammar G_{ab} with $S ightarrow aSb|\epsilon$

Stack	Input	Action	Dead ends
\$	aabb#	shift	reduce $S \rightarrow \epsilon$
\$a	abb#	shift	reduce $S \rightarrow \epsilon$
\$aa	bb#	reduce $S \rightarrow \epsilon$	shift
\$aaS	bb#	shift	reduce $S \rightarrow \epsilon$
\$aaSb	<i>b</i> #	reduce $S \rightarrow aSb$	shift, reduce $S \rightarrow \epsilon$
\$aS	<i>b</i> #	shift	reduce $S \rightarrow \epsilon$
\$aSb	#	reduce $S \rightarrow aSb$	reduce $S \rightarrow \epsilon$
\$ <i>S</i>	#	accept	reduce $S \rightarrow \epsilon$

Issues:

■ Shift vs. Reduce

Reduce
$$A \rightarrow \beta$$
, Reduce $B \rightarrow \alpha \beta$

Parsing *aa* in the grammar $S \rightarrow AB, S \rightarrow A, A \rightarrow a, B \rightarrow a$

Stack	Input	Action	Dead ends
\$	aa#	shift	
\$a	a#	reduce $A \rightarrow a$	reduce $B \rightarrow a$, shift
\$A	a#	shift	reduce $S \rightarrow A$
\$Aa	#	reduce $B \rightarrow a$	reduce $A \rightarrow a$
\$AB	#	reduce $S \rightarrow AB$	
\$ <i>S</i>	#	accept	

Issues:

Shift vs. Reduce

Reduce
$$A \rightarrow \beta$$
, Reduce $B \rightarrow \alpha \beta$

Shift-Reduce Parsers

The bottom-up Parser is a shift-reduce parser, each step is a shift: consuming the next input symbol or reduction: reducing a suffix of the stack contents by some production.

problem is to decide when to stop shifting and make a reduction

 a next right side to reduce is called a handle if reducing too early leads to a dead end, reducing too late buries the handle Parser decides whether to shift or to reduce based on

- the contents of the stack and
- *k* symbols lookahead into the rest of the input

Property of the LR-Parser: it suffices to consider the topmost state on the stack instead of the whole stack contents.

From P_G to LR–Parsers for G

- *P_G* has non-deterministic choice of expansions,
- LL-parsers eliminate non-determinism by looking ahead at expansions,
- LR-parsers pursue all possibilities in parallel (corresponds to the subset-construction in NFSM → DFSM).

Derivation:

- 1. Characteristic finte-state machine of G, a description of P_G
- 2. Make deterministic
- 3. Interpret as control of a push down automaton
- 4. Check for "inedaquate" states

Characteristic Finite-State Machine of G

- ... is a NFSM $ch(G) = (Q_c, V_c, \Delta_c, q_c, F_c)$:
 - states are the items of G
 Q_c = It_G
 - input alphabet are terminals and non-terminals $V_c = V_T \cup V_N$

• start state
$$q_c = [S' o .S]$$

- final states are the complete items $F_c = \{ [X \to \alpha.] \mid X \to \alpha \in P \}$
- Transitions:

$$\Delta_{c} = \{ ([X \to \alpha. Y\beta], Y, [X \to \alpha Y.\beta]) \mid X \to \alpha Y\beta \in P \text{ and } Y \in V_{N} \cup V_{T} \} \\ \cup \{ ([X \to \alpha. Y\beta], \varepsilon, [Y \to .\gamma]) \mid X \to \alpha Y\beta \in P \text{ and } Y \to \gamma \in P \}$$

Item PDA and Characteristic NFA

for G_{ab} : $S \rightarrow aSb|\epsilon$ and $ch(G_{ab})$

Stack	Input	New Stack
[S' ightarrow .S]	ϵ	$[S' \rightarrow .S][S \rightarrow .aSb]$
[S' ightarrow .S]	ϵ	[S' ightarrow .S][S ightarrow .]
$[S \rightarrow .aSb]$	а	[S ightarrow a.Sb]
[S ightarrow a.Sb]	ϵ	[S ightarrow a.Sb][S ightarrow .aSb]
[S ightarrow a.Sb]	ϵ	[S ightarrow a.Sb][S ightarrow .]
[S ightarrow aS.b]	Ь	[S ightarrow aSb.]
[S ightarrow a.Sb][S ightarrow .]	ϵ	[S ightarrow aS.b]
$[S \rightarrow a.Sb][S \rightarrow aSb.]$	ϵ	[S ightarrow aS.b]
$[S' \rightarrow .S][S \rightarrow aSb.]$	ϵ	[S' ightarrow S.]
$[S' \to .S][S \to .]$	ϵ	$[S' \rightarrow S.]$

Characteristic NFSM for G_0

$$S \rightarrow E$$
, $E \rightarrow E + T \mid T$, $T \rightarrow T * F \mid F$, $F \rightarrow (E) \mid id$

11

Interpreting ch(G)

State of ch(G) is the *current* state of P_G , i.e. the state on top of P_G 's stack. Adding actions to the transitions and states of ch(G) to describe P_G :

 ε -transitions: push new state of ch(G) onto stack of P_G : new current state.

reading transitions: shifting transitions of P_G : replace current state of P_G by the shifted one.

final state: Correspond to the following actions in P_G :

- pop final state $[X \rightarrow \alpha]$ from the stack,
- do a transition from the new topmost state under X,
- push the new state onto the stack.

Handles and Reliable Prefixes

Some Abbreviations: RMD: rightmost derivation RSF: right sentential form

Consider a RMD of cfg G:

$$S' \stackrel{*}{\Longrightarrow} \beta X u \stackrel{}{\Longrightarrow} \beta \alpha u$$

- α is a handle of βαu.
 The part of a RSF next to be reduced.
- Each prefix of βα is a reliable prefix.
 A prefix of a RSF stretching at most up to the end of the handle, i.e. reductions if possible then only at the end.

Examples in G_0

RSF (<u>handle</u>)	reliable prefix	Reason
$E + \underline{F}$	E, E+, E+F	$S \Longrightarrow_{rm} E \Longrightarrow_{rm} E + T \Longrightarrow_{rm} E + F$
T * <u>id</u>	T, T*, T*id	$S \stackrel{3}{\Longrightarrow} T * F \Longrightarrow_{rm} T * \mathbf{id}$
<u>F</u> * id		$S \stackrel{4}{\Longrightarrow} T * id \stackrel{\longrightarrow}{\Longrightarrow} F * id$
$T * \mathbf{\underline{id}} + \mathbf{id}$	T, T*, T*id	$S \stackrel{3}{\Longrightarrow} T * F \Longrightarrow_{rm} T * \mathbf{id}$

Valid Items

 $[X \rightarrow \alpha.\beta]$ is valid for the reliable prefix $\gamma \alpha$, if there exists a RMD

$$S' \stackrel{*}{\Longrightarrow} \gamma X w \stackrel{*}{\Longrightarrow} \gamma \alpha \beta w$$

An item valid for a reliable prefix gives one interpretation of the parsing situation.

Some reliable prefixes of G_0

Reliable Prefix	Valid Items	Reason	γ	w	X	α	β
E+	$[E \rightarrow E + .T]$	$S \xrightarrow[rm]{} E \xrightarrow[rm]{} E + T$	ε	ε	Е	E+	Т
	$[T \rightarrow .F]$	$S \xrightarrow{*}_{rm} E + T _{rm} E + F$	E+	ε	Т	ε	F
	[F ightarrow .id]	$S \xrightarrow{*}_{rm} E + F _{rm} E + \mathbf{id}$	E+	ε	F	ε	id
(<i>E</i> + ([F ightarrow (.E)]	$S \xrightarrow{*}_{rm} (E+F)$	(<i>E</i> +)	F	(E)
		$\xrightarrow[rm]{rm} (E + (E))$					

Valid Items and Parsing Situations

Given some input string xuvw.

The RMD $S' \stackrel{*}{\underset{rm}{\longrightarrow}} \gamma Xw \stackrel{*}{\underset{rm}{\longrightarrow}} \gamma \alpha \beta w \stackrel{*}{\underset{rm}{\longrightarrow}} \gamma \alpha vw \stackrel{*}{\underset{rm}{\longrightarrow}} \gamma uvw \stackrel{*}{\underset{rm}{\longrightarrow}} xuvw$ describes the following sequence of partial derivations: $\gamma \stackrel{*}{\underset{rm}{\longrightarrow}} x \qquad \alpha \stackrel{*}{\underset{rm}{\longrightarrow}} u \qquad \beta \stackrel{*}{\underset{rm}{\longrightarrow}} v \qquad X \stackrel{*}{\underset{rm}{\longrightarrow}} \alpha \beta \qquad S' \stackrel{*}{\underset{rm}{\longrightarrow}} \gamma Xw$ executed by the bottom-up parser in this order. The valid item $[X \rightarrow \alpha . \beta]$ for the reliable prefix $\gamma \alpha$ describes the situation

after partial derivation 2,

that is, for RSF $\gamma \alpha v w$

Theorems $ch(G) = (Q_c, V_c, \Delta_c, q_c, F_c)$

Theorem

For each reliable prefix there is at least one valid item.

Every parsing situation is described by at least one valid item.

Theorem

Let $\gamma \in (V_T \cup V_N)^*$ and $q \in Q_c$. $(q_c, \gamma) \vdash_{ch(G)}^* (q, \varepsilon)$ iff γ is a reliable prefix and q is a valid item for γ .

A reliable prefix brings ch(G) from its initial state to all its valid items.

Theorem

The language of reliable prefixes of a cfg is regular.

Making ch(G) deterministic

Apply **NFSM** \rightarrow **DFSM** to ch(G): Result $LR_0(G)$. Example: $ch(G_{ab})$

 $LR_0(G_{ab})$:

Characteristic NFSM for G_0

$$S \rightarrow E$$
, $E \rightarrow E + T \mid T$, $T \rightarrow T * F \mid F$, $F \rightarrow (E) \mid id$

19

 $LR_0(G_0)$

The States of $LR_0(G_0)$ as Sets of Items

 $S_0 = \{ [S \rightarrow .E], S_5 = \{ [F \rightarrow id.] \}$ $\begin{bmatrix} D \to D & E_1 \\ E \to E + T \end{bmatrix}, \qquad S_6 \qquad = \{ \begin{bmatrix} E \to E + D \\ T \to T * F \end{bmatrix}, \qquad \begin{bmatrix} T \to T * F \end{bmatrix}, \qquad \begin{bmatrix} T \to F \end{bmatrix}, \qquad \begin{bmatrix} T \to F \end{bmatrix}, \qquad \begin{bmatrix} T \to F \end{bmatrix}, \qquad \begin{bmatrix} F \to E \end{bmatrix}, \qquad \begin{bmatrix} T \to F \end{bmatrix}, \qquad \begin{bmatrix} F \to E \end{smallmatrix}, \end{bmatrix}, \begin{bmatrix} F \to E \end{smallmatrix}, \hline F \to E \end{smallmatrix}, \end{bmatrix}, \begin{bmatrix} F \to E \end{smallmatrix}, \hline F \to E \end{smallmatrix}, \end{bmatrix}, \begin{bmatrix} F \to E \end{smallmatrix}, \hline F \to E \end{smallmatrix}, \hline \begin{bmatrix} F \to E \end{smallmatrix}, \hline F \to E \end{smallmatrix}, \hline \begin{bmatrix} F \to E \end{smallmatrix}, \hline \begin{bmatrix} F \to E \end{smallmatrix}, \hline \begin{bmatrix} F \to E \end{smallmatrix}, \hline \end{bmatrix}, \hline \end{bmatrix}, \begin{bmatrix} F \to E \end{smallmatrix}, \hline \end{bmatrix}, \begin{bmatrix} F \to E \end{smallmatrix}, \hline \end{bmatrix}, \hline \end{bmatrix}, \begin{bmatrix} F \to E \end{smallmatrix}, \hline \end{bmatrix}, \begin{bmatrix} F \to E \end{smallmatrix}, \hline \end{bmatrix}, \begin{bmatrix} F \to E \end{smallmatrix}, \hline \end{bmatrix}, \hline \end{bmatrix}, \begin{bmatrix} F \to E \end{smallmatrix}, \hline \end{bmatrix}$ $S_2 = \{ \begin{array}{cc} [E \rightarrow T.], \\ [T \rightarrow T.*F] \} \end{array} \qquad S_8 = \{ \begin{array}{cc} [F \rightarrow (E.)], \\ [E \rightarrow E.+T] \} \end{array}$ $S_3 = \{ [T \rightarrow F.] \} \qquad S_9 = \{ [E \rightarrow E + T.], \\ [T \rightarrow T. * F] \}$ $S_4 = \{ [F \to (.E)], S_{10} = \{ [T \to T * F.] \}$ $\begin{bmatrix} E \rightarrow .E + T \end{bmatrix}, \\ \begin{bmatrix} E \rightarrow .T \end{bmatrix}, \qquad S_{11} = \{ F \rightarrow (E). \end{bmatrix} \}$ $[T \rightarrow .T * F]$ $[T \rightarrow .F]$ $[F \rightarrow .(E)]$ $[F \rightarrow .id]$

Theorems

$$ch(G) = (Q_c, V_c, \Delta_c, q_c, F_c)$$
 and $LR_0(G) = (Q_d, V_N \cup V_T, \Delta, q_d, F_d)$

Theorem

Let γ be a reliable prefix and $p(\gamma) \in Q_d$ be the uniquely determined state, into which $LR_0(G)$ transfers out of the initial state by reading γ , i.e., $(q_d, \gamma) \models_{_{LR0(G)}}^* (p(\gamma), \varepsilon)$. Then

- (a) $p(\varepsilon) = q_d$
- (b) $p(\gamma) = \{q \in Q_c \mid (q_c, \gamma) \vdash^*_{_{ch(G)}} (q, \varepsilon)\}$
- (c) $p(\gamma) = \{i \in It_G \mid i \text{ valid for } \gamma\}$
- (d) Let Γ the (in general infinite) set of all reliable prefixes of G. The mapping $p: \Gamma \to Q_d$ defines a finite partition on Γ .
- (e) $L(LR_0(G))$ is the set of reliable prefixes of G that end in a handle.

 $\gamma = \mathbf{E} + \mathbf{F}$ is a reliable prefix of G_0 . With the state $p(\gamma) = S_3$ are also associated: F, (F, ((F, (((F.... T * (F, T * ((F, T * (((F, ...,E + F, E + (F, E + ((F, ..., E + (F, E + ((F, ..., E + (F, E +Regard S_6 in $LR_0(G_0)$. It consists of all valid items for the reliable prefix E_{+} , i.e., the items $[E \rightarrow E + .T], [T \rightarrow .T * F], [T \rightarrow .F], [F \rightarrow .id], [F \rightarrow .(E)].$ Reason: E+ is prefix of the RSF E+T: $S \Longrightarrow_{rm} E \Longrightarrow_{rm} E + T \Longrightarrow_{rm} E + F \Longrightarrow_{rm} E + id$

Therefore $[E \rightarrow E + .T]$ $[T \rightarrow .F]$ $[F \rightarrow .id]$ are valid.

What the $LR_0(G)$ describes

 $LR_0(G)$ interpreted as a PDA $P_0(G) = (\Gamma, V_T, \Delta, q_0, \{q_f\})$

- Γ (stack alphabet): the set Q_d of states of $LR_0(G)$.
- $q_0 = q_d$ (initial state): in the stack of $P_0(G)$ initially.
- $q_f = \{[S' \rightarrow S.]\}$ the final state of $LR_0(G)$,
- Δ ⊆ Γ* × (V_T ∪ {ε}) × Γ* (transition relation): Defined as follows:

$LR_0(G)$'s Transition Relation

shift:
$$(q, a, q \, \delta_d(q, a)) \in \Delta$$
, if $\delta_d(q, a)$ defined.
Read next input symbol a and push successor state of q
under a (item $[X \rightarrow \cdots . a \cdots] \in q$).

reduce:
$$(q q_1 \dots q_n, \varepsilon, q \delta_d(q, X)) \in \Delta$$
,
if $[X \to \alpha] \in q_n$, $|\alpha| = n$.
Remove $|\alpha|$ entries from the stack.
Push the successor of the new topmost state under X onto
the stack.

Note the difference in the stacking behavior:

- the Item PDA P_G keeps on the stack only one item for each production under analysis,
- the PDA described by the $LR_0(G)$ keeps $|\alpha|$ states on the stack for a production $X \to \alpha\beta$ represented with item $[X \to \alpha.\beta]$

```
Reduction in PDA P_0(G)
```


Some observations and recollections

- **a**lso works for reductions of ϵ ,
- each state has a unique entry symbol,
- the stack contents uniquely determine a reliable prefix,
- current state (topmost) is the state associated with this reliable prefix,
- current state consists of all items valid for this reliable prefix.

Non-determinism in $P_0(G)$

 $P_0(G)$ is non-deterministic if either

Shift-reduce conflict: There are shift as well as reduce transitions out of one state, or

Reduce-reduce conflict: There are more than one reduce transitions from one state.

States with a shift-reduce conflict have at least one read item $[X \to \alpha . a \beta]$ and at least one complete item $[Y \to \gamma.]$.

States with a reduce–reduce conflict have at least two complete items $[Y \rightarrow \alpha.], \ [Z \rightarrow \beta.].$

A state with a conflict is **inadequate**.

Some Inadequate States

 $LR_0(G_0)$ has three inadequate states, S_1 , S_2 and S_9 .

- S_1 : Can reduce E to S (complete item $[S \rightarrow E.]$) or read "+" (shift-item $[E \rightarrow E. + T]$);
- S_2 : Can reduce T to E (complete item $[E \rightarrow T.]$) or read "*" (shift-item $[T \rightarrow T. *F]$);
- S₉: Can reduce E + T to E (complete item $[E \rightarrow E + T.]$) or read "*" (shift-item $[T \rightarrow T. * F]$).

Adding Lookahead

• LR(k) item
$$[X \to \alpha_1.\alpha_2, L]$$

if $X \to \alpha_1\alpha_2 \in P$ and $L \subseteq V_{T\#}^{\leq k}$

• LR(0) item $[X \rightarrow \alpha_1.\alpha_2]$ is called core of $[X \rightarrow \alpha_1.\alpha_2, L]$

• lookahead set L of
$$[X \rightarrow \alpha_1.\alpha_2, L]$$

• $[X \rightarrow \alpha_1.\alpha_2, L]$ is valid for a reliable prefix $\alpha \alpha_1$ if

$$S' # \stackrel{*}{\Longrightarrow} \alpha X w \stackrel{*}{\Longrightarrow} \alpha \alpha_1 \alpha_2 w$$

and

$$L = \{ u \mid S' \# \stackrel{*}{\underset{rm}{\Longrightarrow}} \alpha X w \underset{rm}{\Longrightarrow} \alpha \alpha_1 \alpha_2 w \text{ and } u = k : w \}$$

The context-free items can be regarded as LR(0)-items if $[X \to \alpha_1.\alpha_2, \{\varepsilon\}]$ is identified with $[X \to \alpha_1.\alpha_2]$.

Example from G_0

1. $[E \rightarrow E + .T, \{), +, \#\}]$ is a valid LR(1)-item for (E+

2. $[E \rightarrow T., \{*\}]$ is not a valid LR(1)-item for any reliable prefix

Reasons:

1.
$$S' \stackrel{*}{\Longrightarrow} (E) \stackrel{*}{\Longrightarrow} (E+T) \stackrel{*}{\Longrightarrow} (E+T+id)$$
 where
 $\alpha = (, \ \alpha_1 = E+, \ \alpha_2 = T, \ u = +, \ w = +id)$

2. The string E* can occur in no RMD.

LR–Parser

Take their decisions (to shift or to reduce) by consulting

- the reliable prefix γ in the stack, actually the by γ uniquely determined state (on top of the stack),
- the next k symbols of the remaining input.
- Recorded in an action-table.

The entries in this table are: shift: read next input symbol; reduce $(X \rightarrow \alpha)$: reduce by production $X \rightarrow \alpha$; error: report error accept: report successful termination.

A goto-table records the transition function of characteristic automaton

The action- and the goto-table

Parser Table for $S
ightarrow aSb|\epsilon$

Action-table

state sets of items		symbols			
		а	b	#	
0	$\left\{\begin{array}{c} [S' \to .S],\\ [S \to .aSb],\\ [S \to .]\right\}\end{array}\right\}$	s		$r(S o \epsilon)$	
1	$\left\{ egin{array}{c} [S ightarrow a.Sb], \ [S ightarrow .aSb], \ [S ightarrow .] ight\} ight\}$	5	$r(S o \epsilon)$		
2	$\{[S \rightarrow aS.b]\}$		S		
23	$\{[S \rightarrow aSb.]\}$		r(S ightarrow aSb)	r(S ightarrow aSb)	
4	$\{[S' \rightarrow S.]\}$. ,	accept	

Goto-table

state	symbol				
	а	b	#	S	
0	1			4	
1	1			2	
2		3			
3					
4					

Parsing *aabb*

Stack	Input	Action
\$0	aabb#	shift 1
\$01	abb#	shift 1
\$011	bb#	reduce $S \rightarrow \epsilon$
\$0112	bb#	shift 3
\$01123	<i>b</i> #	reduce $S \rightarrow aSb$
\$012	<i>b</i> #	shift 3
\$0123	#	reduce $S \rightarrow aSb$
\$04	#	accept

Algorithm LR(1)–PARSER

type *state* = set of item;

var lookahead: symbol;

(* the next not yet consumed input symbol *)

S : stack of state;

proc scan;

(* reads the next symbol into *lookahead* *)

proc acc;

(* report successful parse; halt *)

proc err(message: string);

(* report error; halt *)

```
scan; push(S, q_d);
forever do
   case action[top(S), lookahead] of
     shift: begin push(S, goto[top(S), lookahead]);
                    scan
            end :
     reduce (X \rightarrow \alpha): begin
                              pop^{|\alpha|}(S); push(S, goto[top(S), X]);
                              output(" X \to \alpha")
                          end :
     accept: acc;
     error: err("...");
   end case
od
```

LR(1)–Conflicts

```
Set of LR(1)-items I has a
```

```
shift-reduce-conflict:
```

if exists at least one item $[X \rightarrow \alpha.a\beta, L_1] \in I$ and at least one item $[Y \rightarrow \gamma., L_2] \in I$, and if $a \in L_2$.

```
reduce-reduce-conflict:
```

if it contains at least two items $[X \to \alpha., L_1]$ and $[Y \to \beta., L_2]$ where $L_1 \cap L_2 \neq \emptyset$.

A state with a conflict is called inadequate.

Example from G_0

$$\begin{array}{l} S_{2}^{\prime} = & Closure(Succ(S_{0}^{\prime}, T)) \\ = \{ [E \rightarrow T., \{\#, +\}], \\ & [T \rightarrow T. * F, \{\#, +, *\}] \} \end{array}$$

Inadequate LR(0)-states S_1, S_2 und S_9 are adequate after adding lookahead sets.

}

$$S'_1$$
 shifts under "+", reduces under "#".
 S'_2 shifts under "*", reduces under "#" and "+",
 S'_9 shifts under "*", reduces under "#" and "+".

 G_0 encodes operator precedence and associativity and used lookahead in an LR(1) parser to disambiguate.

Idea: Use ambiguous grammar G'_0 :

$$E \rightarrow E + E \mid E * E \mid \mathsf{id} \mid (E)$$

and operator precedence and associativity to disambiguate directly.

Deterministic $ch(G'_0)$

... contains two states:

with shift reduce conflicts.

In both states, the parser can reduce or shift either + or *.

$ch(G'_0)$ conflicts in detail

• Consider the input id + id * id

and let the top of the stack be S_7 .

- If reduce, then + has higher precendence than *
- If shift, then + has lower precendence than *

Consider the input id + id + id and let the top of the stack be S₇.

- If reduce, + is left-associative
- If shift, + is right-associative

Simple Implementation for Expression Parser

- Model precedence/assoc with left and right precedence
- Shift/reduce mechanism can be implemented with loop and recursion:

```
Expression parseExpression(Precedence precedence) {
   Expression expr = parsePrimary();
   for (;;) {
        Token t = currToken:
       TokenKind kind = t.getKind();
        // if operator in lookahead has less left precedence: reduce
        if (kind.getLPrec() < precedence)</pre>
            return expr;
        // else shift
        nextToken():
        // and parse other operand with right precedence
        Expression right = parseExpression(kind.getRPrec());
        expr = factory.createBinaryExpression(t, expr, right);
    }
}
```