Bottom-Up Syntax Analysis

Reinhard Wilhelm, Sebastian Hack, Mooly Sagiv
Saarland University, Tel Aviv University

W2015

Saarland University, Computer Science

Subjects

- Functionality and Method
- Example Parsers
- Derivation of a Parser
- Conflicts
- $L R(k)$-Grammars
- $L R(1)$-Parser Generation

■ Bison

Bottom-Up Syntax Analysis

Input: A stream of symbols (tokens)
Output: A syntax tree or error
Method: until input consumed or error do
■ shift next symbol or reduce by some production
■ decide what to do by looking k symbols ahead
Properties: ■ Constructs the syntax tree in a bottom-up manner
■ Finds the rightmost derivation (in reversed order)

- Reports error as soon as the already read part of the input is not a prefix of a program (valid prefix property)

Parsing $a a b b$ in the grammar $G_{a b}$ with $S \rightarrow a S b \mid \epsilon$

Stack	Input	Action	Dead ends
$\$$	$a a b b \#$	shift	reduce $S \rightarrow \epsilon$
$\$ a$	$a b b \#$	shift	reduce $S \rightarrow \epsilon$
$\$ a a$	$b b \#$	reduce $S \rightarrow \epsilon$	shift
$\$ a a S$	$b b \#$	shift	reduce $S \rightarrow \epsilon$
$\$ a a S b$	$b \#$	reduce $S \rightarrow a S b$	shift, reduce $S \rightarrow \epsilon$
$\$ a S$	$b \#$	shift	reduce $S \rightarrow \epsilon$
$\$ a S b$	$\#$	reduce $S \rightarrow a S b$	reduce $S \rightarrow \epsilon$
$\$ S$	$\#$	accept	reduce $S \rightarrow \epsilon$

Issues:
■ Shift vs. Reduce

- Reduce $A \rightarrow \beta$, Reduce $B \rightarrow \alpha \beta$

Parsing aa in the grammar $S \rightarrow A B, S \rightarrow A, A \rightarrow a, B \rightarrow a$

Stack	Input	Action	Dead ends
$\$$	$a a \#$	shift	
$\$ a$	$a \#$	reduce $A \rightarrow a$	reduce $B \rightarrow a$, shift
$\$ A$	$a \#$	shift	reduce $S \rightarrow A$
$\$ A a$	$\#$	reduce $B \rightarrow a$	reduce $A \rightarrow a$
$\$ A B$	$\#$	reduce $S \rightarrow A B$	
$\$ S$	$\#$	accept	

Issues:

- Shift vs. Reduce

■ Reduce $A \rightarrow \beta$, Reduce $B \rightarrow \alpha \beta$

Shift-Reduce Parsers

- The bottom-up Parser is a shift-reduce parser, each step is a shift: consuming the next input symbol or reduction: reducing a suffix of the stack contents by some production.

■ problem is to decide when to stop shifting and make a reduction

- a next right side to reduce is called a handle if reducing too early leads to a dead end, reducing too late buries the handle

LR-Parsers - Deterministic Shift-Reduce Parsers

Parser decides whether to shift or to reduce based on

- the contents of the stack and
- k symbols lookahead into the rest of the input

Property of the LR-Parser: it suffices to consider the topmost state on the stack instead of the whole stack contents.

From P_{G} to LR-Parsers for G

- P_{G} has non-deterministic choice of expansions,

■ LL-parsers eliminate non-determinism by looking ahead at expansions,

- LR-parsers pursue all possibilities in parallel (corresponds to the subset-construction in NFSM \rightarrow DFSM).

Derivation:

1. Characteristic finte-state machine of G, a description of P_{G}
2. Make deterministic
3. Interpret as control of a push down automaton
4. Check for "inedaquate" states

Characteristic Finite-State Machine of G

\ldots is a $\operatorname{NFSM} \operatorname{ch}(G)=\left(Q_{c}, V_{c}, \Delta_{c}, q_{c}, F_{c}\right)$:
■ states are the items of G

$$
Q_{c}=I t_{G}
$$

- input alphabet are terminals and non-terminals

$$
V_{c}=V_{T} \cup V_{N}
$$

■ start state $q_{c}=\left[S^{\prime} \rightarrow . S\right]$
■ final states are the complete items

$$
F_{c}=\{[X \rightarrow \alpha .] \mid X \rightarrow \alpha \in P\}
$$

- Transitions:

$$
\begin{aligned}
\Delta_{c} & =\left\{([X \rightarrow \alpha . Y \beta], Y,[X \rightarrow \alpha Y . \beta]) \mid X \rightarrow \alpha Y \beta \in P \text { and } Y \in V_{N} \cup V_{T}\right\} \\
& \cup\{([X \rightarrow \alpha . Y \beta], \varepsilon,[Y \rightarrow . \gamma]) \mid X \rightarrow \alpha Y \beta \in P \text { and } Y \rightarrow \gamma \in P\}
\end{aligned}
$$

Item PDA and Characteristic NFA

for $G_{a b}: \quad S \rightarrow a S b \mid \epsilon$ and $c h\left(G_{a b}\right)$

Stack	Input	New Stack
$\left[S^{\prime} \rightarrow . S\right]$	ϵ	$\left[S^{\prime} \rightarrow . S\right][S \rightarrow . a S b]$
$\left[S^{\prime} \rightarrow . S\right]$	ϵ	$\left[S^{\prime} \rightarrow . S\right][S \rightarrow]$.
$[S \rightarrow . a S b]$	a	$[S \rightarrow a . S b]$
$[S \rightarrow a . S b]$	ϵ	$[S \rightarrow a . S b][S \rightarrow . a S b]$
$[S \rightarrow a . S b]$	$[S \rightarrow a . S b][S \rightarrow]$.	
$[S \rightarrow a S . b]$	$[S \rightarrow a S b]$.	
$[S \rightarrow a . S b][S \rightarrow]$.	ϵ	$[S \rightarrow a S . b]$
$[S \rightarrow a . S b][S \rightarrow a S b]$.	ϵ	$[S \rightarrow a S . b]$
$\left[S^{\prime} \rightarrow . S\right][S \rightarrow a S b]$.	ϵ	$\left[S^{\prime} \rightarrow S.\right]$
$\left[S^{\prime} \rightarrow . S\right][S \rightarrow]$.	ϵ	$\left[S^{\prime} \rightarrow S.\right]$

Characteristic NFSM for G_{0}

$$
S \rightarrow E, \quad E \rightarrow E+T|T, \quad T \rightarrow T * F| F, \quad F \rightarrow(E) \mid \text { id }
$$

Interpreting $c h(G)$

State of $\operatorname{ch}(G)$ is the current state of P_{G}, i.e. the state on top of P_{G} 's stack. Adding actions to the transitions and states of $\operatorname{ch}(G)$ to describe P_{G} :
ε-transitions: push new state of $\operatorname{ch}(G)$ onto stack of P_{G} : new current state.
reading transitions: shifting transitions of P_{G} : replace current state of P_{G} by the shifted one.
final state: Correspond to the following actions in P_{G} :
■ pop final state $[X \rightarrow \alpha$.] from the stack,
■ do a transition from the new topmost state under X,

- push the new state onto the stack.

Handles and Reliable Prefixes

Some Abbreviations:
RMD: rightmost derivation
RSF: right sentential form

Consider a RMD of cfg G:

$$
S^{\prime} \underset{r m}{*} \beta X u \underset{r m}{\Longrightarrow} \beta \alpha u
$$

- α is a handle of $\beta \alpha u$.

The part of a RSF next to be reduced.
■ Each prefix of $\beta \alpha$ is a reliable prefix. A prefix of a RSF stretching at most up to the end of the handle, i.e. reductions if possible then only at the end.

Examples in G_{0}

RSF (handle)	reliable prefix	Reason
$E+\underline{F}$	$E, E+, E+F$	$S \underset{r m}{\Longrightarrow} E \underset{r m}{\Longrightarrow} E+T \underset{r m}{\Longrightarrow} E+F$
$T * \underline{\text { id }}$	$T, T *, T * \mathbf{i d}$	$S \underset{r m}{3} T * F \underset{r m}{\Longrightarrow} T *$ id
$\underline{F} *$ id		$S \underset{r m}{\stackrel{4}{\longrightarrow}} T *$ id $\underset{r m}{\Longrightarrow} F *$ id
$T * \underline{\text { id }}+\mathbf{i d}$	$T, T *, T * \mathbf{i d}$	$S \underset{r m}{3} T * F \underset{r m}{\longrightarrow} T *$ id

Valid Items

[$X \rightarrow \alpha . \beta]$ is valid for the reliable prefix $\gamma \alpha$, if there exists a RMD

$$
S^{\prime} \stackrel{\rightharpoonup}{*} \gamma X_{w} \underset{r m}{\Longrightarrow} \gamma \alpha \beta w
$$

An item valid for a reliable prefix gives one interpretation of the parsing situation.

Some reliable prefixes of G_{0}

Reliable Prefix	Valid Items	Reason	γ	w	x	α	β
E+	$[E \rightarrow E+. T]$	$S \underset{r_{\text {m }}}{\Rightarrow} E \underset{r m}{\Longrightarrow} E+T$	ε	ε	E	E+	T
	$[T \rightarrow . F]$	$S \underset{r m}{*} E+T \underset{r m}{\Longrightarrow} E+F$	$E+$	ε	T	ε	F
	$[F \rightarrow . \mathrm{id}]$	$S \underset{r m}{*} E+F \underset{\sim m}{\sim} E+$ id	$E+$	ε	F	ε	id
($E+1$	$[F \rightarrow(. E)]$	$\begin{gathered} S \underset{\stackrel{*}{\stackrel{*}{r m}}(E+F)}{\underset{r m}{\Rightarrow}(E+(E))} \end{gathered}$	($E+$)	F	(E)

Valid Items and Parsing Situations

Given some input string xuvw.
The RMD $\quad S^{\prime} \underset{r m}{*} \gamma X w \underset{r m}{\Longrightarrow} \gamma \alpha \beta w \underset{r m}{*} \gamma \alpha v w \underset{r m}{*} \gamma u v w \underset{r m}{*} x u v w$ describes the following sequence of partial derivations:
$\gamma \underset{r m}{*} x \quad \alpha \underset{r m}{*} u \quad \beta \underset{r m}{*} v \quad X \underset{r m}{\Longrightarrow} \alpha \beta \quad S^{\prime} \underset{r m}{*} \gamma X w$
executed by the bottom-up parser in this order.
The valid item $[X \rightarrow \alpha . \beta]$ for the reliable prefix $\gamma \alpha$ describes the situation after partial derivation 2,
that is, for RSF $\gamma \alpha v w$

Theorems

$$
c h(G)=\left(Q_{c}, V_{c}, \Delta_{c}, q_{c}, F_{c}\right)
$$

Theorem

For each reliable prefix there is at least one valid item.

Every parsing situation is described by at least one valid item.

Theorem

Let $\gamma \in\left(V_{T} \cup V_{N}\right)^{*}$ and $q \in Q_{c}$.
$\left(q_{c}, \gamma\right) \stackrel{\rightharpoonup}{c h(G)}_{\bullet^{*}}(q, \varepsilon)$ iff γ is a reliable prefix and q is a valid item for γ.

A reliable prefix brings $\operatorname{ch}(G)$ from its initial state to all its valid items.

Theorem

The language of reliable prefixes of a cfg is regular.

Making $c h(G)$ deterministic

Apply NFSM \rightarrow DFSM to $c h(G)$: Result $L R_{0}(G)$.
Example: $c h\left(G_{a b}\right)$

$L R_{0}\left(G_{a b}\right):$

Characteristic NFSM for G_{0}

$$
S \rightarrow E, \quad E \rightarrow E+T|T, \quad T \rightarrow T * F| F, \quad F \rightarrow(E) \mid \text { id }
$$

$L R_{0}\left(G_{0}\right)$

The States of $L R_{0}\left(G_{0}\right)$ as Sets of Items

$$
\begin{aligned}
& S_{0}=\left\{\begin{array}{ll}
& {[S \rightarrow . E],} \\
& {[E \rightarrow . E+T],}
\end{array} \quad S_{5}=\{\quad[F \rightarrow \text { id. }]\}\right. \\
& \begin{array}{l}
{[E \rightarrow . T],} \\
{[T \rightarrow . T * F],}
\end{array} \quad S_{6}=\left\{\begin{array}{l}
{[E \rightarrow E+. T],} \\
{[T \rightarrow . T * F],}
\end{array}\right. \\
& {[T \rightarrow . F],} \\
& {[F \rightarrow .(E)] \text {, }} \\
& [F \rightarrow . i d]\} \\
& {[T \rightarrow . F] \text {, }} \\
& \begin{array}{l}
{[F \rightarrow .(E)],} \\
[F \rightarrow . i d]\}
\end{array} \\
& S_{1}=\left\{\begin{array}{ll}
{[S \rightarrow E .],} \\
& [E \rightarrow E .+T]\}
\end{array} \quad S_{7}=\left\{\begin{array}{l}
{[T \rightarrow T * . F],} \\
\\
{[F \rightarrow .(E)],}
\end{array}\right.\right. \\
& S_{2}=\left\{\begin{array}{ll}
& {[E \rightarrow T .],} \\
[T \rightarrow T . * F]\}
\end{array} \quad S_{8}=\left\{\begin{array}{l}
[F \rightarrow . \mathrm{id}]\} \\
\\
{[F \rightarrow(E .)],} \\
\\
[F \rightarrow E .+T]\}
\end{array}\right.\right. \\
& S_{3}=\{\quad[T \rightarrow F .]\} \quad S_{9}=\left\{\begin{array}{l}
{[E \rightarrow E+T .],} \\
\\
[T \rightarrow T . * F]\}
\end{array}\right. \\
& S_{4}=\left\{\begin{array}{l}
{[F \rightarrow(. E)],} \\
{[E \rightarrow . E+T],}
\end{array} \quad S_{10}=\{\quad[T \rightarrow T * F .]\}\right. \\
& {[E \rightarrow . E+T] \text {, }} \\
& {[E \rightarrow . T], \quad S_{11}=\{\quad[F \rightarrow(E) \cdot]\}} \\
& {[T \rightarrow . T * F]} \\
& {[T \rightarrow . F]} \\
& {[F \rightarrow .(E)]} \\
& [F \rightarrow . i d]\}
\end{aligned}
$$

Theorems

$$
\operatorname{ch}(G)=\left(Q_{c}, V_{c}, \Delta_{c}, q_{c}, F_{c}\right) \text { and } L R_{0}(G)=\left(Q_{d}, V_{N} \cup V_{T}, \Delta, q_{d}, F_{d}\right)
$$

Theorem

Let γ be a reliable prefix and $p(\gamma) \in Q_{d}$ be the uniquely determined state, into which $L R_{0}(G)$ transfers out of the initial state by reading γ, i.e., $\left(q_{d}, \gamma\right) \stackrel{L R O O}{ }(G)_{\vdash^{*}}(p(\gamma), \varepsilon)$. Then
(a) $p(\varepsilon)=q_{d}$
(b) $p(\gamma)=\left\{q \in Q_{c} \mid\left(q_{c}, \gamma\right) \vdash_{c h(G)}^{*}(q, \varepsilon)\right\}$
(c) $p(\gamma)=\left\{i \in I_{G} \mid i\right.$ valid for $\left.\gamma\right\}$
(d) Let 「 the (in general infinite) set of all reliable prefixes of G.

The mapping $p: \Gamma \rightarrow Q_{d}$ defines a finite partition on Γ.
(e) $L\left(L R_{0}(G)\right)$ is the set of reliable prefixes of G that end in a handle.
G_{0}
$\gamma=E+F$ is a reliable prefix of G_{0}.
With the state $p(\gamma)=S_{3}$ are also associated:
$F,(F,((F),((F, \ldots$
$T *(F, T *((F, T *)((F, \ldots$
$E+F, E+(F, E+((F, \ldots$
Regard S_{6} in $L R_{0}\left(G_{0}\right)$.
It consists of all valid items for the reliable prefix $E+$,
i.e., the items $[E \rightarrow E+. T],[T \rightarrow . T * F],[T \rightarrow . F],[F \rightarrow . i d],[F \rightarrow .(E)]$.

Reason:
$E+$ is prefix of the RSF $E+T$;
$S \underset{r m}{\Longrightarrow} E \underset{r m}{\Longrightarrow} E+T \quad E+F \underset{r m}{\Longrightarrow} E+$ id
Therefore $\quad[E \rightarrow E+. T] \quad[T \rightarrow . F] \quad[F \rightarrow . \mathrm{id}]$
are valid.

What the $L R_{0}(G)$ describes

$L R_{0}(G)$ interpreted as a PDA $P_{0}(G)=\left(\Gamma, V_{T}, \Delta, q_{0},\left\{q_{f}\right\}\right)$
■ 「 (stack alphabet): the set Q_{d} of states of $L R_{0}(G)$.
■ $q_{0}=q_{d}$ (initial state): in the stack of $P_{0}(G)$ initially.
■ $q_{f}=\left\{\left[S^{\prime} \rightarrow S.\right]\right\}$ the final state of $L R_{0}(G)$,
■ $\Delta \subseteq \Gamma^{*} \times\left(V_{T} \cup\{\varepsilon\}\right) \times \Gamma^{*}$ (transition relation):
Defined as follows:

$L R_{0}(G)$'s Transition Relation

shift: $\left(q, a, q \delta_{d}(q, a)\right) \in \Delta$, if $\delta_{d}(q, a)$ defined.
Read next input symbol a and push successor state of q under a (item $[X \rightarrow \cdots, a \cdots] \in q$).
reduce: $\left(q q_{1} \ldots q_{n}, \varepsilon, q \delta_{d}(q, X)\right) \in \Delta$, if $[X \rightarrow \alpha.] \in q_{n},|\alpha|=n$.
Remove $|\alpha|$ entries from the stack.
Push the successor of the new topmost state under X onto the stack.

Note the difference in the stacking behavior:
■ the Item PDA P_{G} keeps on the stack only one item for each production under analysis,

- the PDA described by the $L R_{0}(G)$ keeps $|\alpha|$ states on the stack for a production $X \rightarrow \alpha \beta$ represented with item $[X \rightarrow \alpha . \beta]$

Reduction in PDA $P_{0}(G)$

$$
\left\{\begin{array}{c}
{[\cdots \rightarrow \cdots . x \cdots]} \\
{[x \rightarrow . \alpha]} \\
\cdots
\end{array}\right\} \xrightarrow{x}\left\{\begin{array}{c}
{[\cdots \rightarrow \cdots x \cdots]} \\
\cdots
\end{array}\right\}
$$

Some observations and recollections

- also works for reductions of ϵ,

■ each state has a unique entry symbol,

- the stack contents uniquely determine a reliable prefix,
- current state (topmost) is the state associated with this reliable prefix,

■ current state consists of all items valid for this reliable prefix.

Non-determinism in $P_{0}(G)$

$P_{0}(G)$ is non-deterministic if either
Shift-reduce conflict: There are shift as well as reduce transitions out of one state, or

Reduce-reduce conflict: There are more than one reduce transitions from one state.

States with a shift-reduce conflict have at least one read item [$X \rightarrow \alpha . a \beta$] and at least one complete item [$Y \rightarrow \gamma$.].

States with a reduce-reduce conflict have at least two complete items

$$
[Y \rightarrow \alpha .],[Z \rightarrow \beta .] .
$$

A state with a conflict is inadequate.

Some Inadequate States

$L R_{0}\left(G_{0}\right)$ has three inadequate states, S_{1}, S_{2} and S_{9}.
S_{1} : Can reduce E to S (complete item $[S \rightarrow E$.$])$ or read "+" (shift-item $[E \rightarrow E .+T]$);
S_{2} : Can reduce T to E (complete item [$E \rightarrow T$.]) or read " $*$ " (shift-item [$T \rightarrow T . * F$]);
S_{9} : Can reduce $E+T$ to E (complete item $[E \rightarrow E+T$.$])$ or read "*" (shift-item [$T \rightarrow T . * F$]).

Adding Lookahead

- $\operatorname{LR}(\mathrm{k})$ item $\left[X \rightarrow \alpha_{1} . \alpha_{2}, L\right]$
if $X \rightarrow \alpha_{1} \alpha_{2} \in P$ and $L \subseteq V \frac{\leq k}{T \#}$
- $\operatorname{LR}(0)$ item $\left[X \rightarrow \alpha_{1} \cdot \alpha_{2}\right]$ is called core of $\left[X \rightarrow \alpha_{1} \cdot \alpha_{2}, L\right]$

■ lookahead set L of $\left[X \rightarrow \alpha_{1} . \alpha_{2}, L\right]$
■ $\left[X \rightarrow \alpha_{1} \cdot \alpha_{2}, L\right]$ is valid for a reliable prefix $\alpha \alpha_{1}$ if

$$
S^{\prime} \# \underset{r m}{*} \alpha X w \underset{r m}{\Longrightarrow} \alpha \alpha_{1} \alpha_{2} w
$$

and

$$
L=\left\{u \mid S^{\prime} \# \underset{r m}{*} \alpha X w \underset{r m}{\Longrightarrow} \alpha \alpha_{1} \alpha_{2} w \quad \text { and } \quad u=k: w\right\}
$$

The context-free items can be regarded as $\operatorname{LR}(0)$-items if [$\left.X \rightarrow \alpha_{1} . \alpha_{2},\{\varepsilon\}\right]$ is identified with $\left[X \rightarrow \alpha_{1} . \alpha_{2}\right]$.

Example from G_{0}

1. $[E \rightarrow E+. T,\{),+, \#\}]$ is a valid $\operatorname{LR}(1)$-item for $(E+$
2. $[E \rightarrow T .,\{*\}]$ is not a valid $\operatorname{LR}(1)$-item for any reliable prefix

Reasons:

1. $S^{\prime} \underset{r m}{*}(E) \underset{r m}{\Longrightarrow}(E+T) \underset{r m}{*}(E+T+\mathbf{i d})$ where

$$
\alpha=\left(, \alpha_{1}=E+, \alpha_{2}=T, u=+, w=+\mathbf{i d}\right)
$$

2. The string $E *$ can occur in no RMD.

LR-Parser

Take their decisions (to shift or to reduce) by consulting

- the reliable prefix γ in the stack, actually the by γ uniquely determined state (on top of the stack),
- the next k symbols of the remaining input.
- Recorded in an action-table.
- The entries in this table are: shift: read next input symbol; reduce $(X \rightarrow \alpha)$: reduce by production $X \rightarrow \alpha$; error: accept: report error
report successful termination.
A goto-table records the transition function of characteristic automaton

The action- and the goto-table
action-table
$V_{T \#}^{\leq k}$ u
parser-action for (q, u)
goto-table
$V_{N} \cup V_{T}$

	X

Parser Table for $S \rightarrow a S b \mid \epsilon$

Action-table

state	sets of items	symbols		
		a	b	\#
0	$\left\{\begin{array}{l}{\left[S^{\prime} \rightarrow . S\right],} \\ {[S \rightarrow . a S b],} \\ [S \rightarrow .]\}\end{array}\right\}$	s		$r(S \rightarrow \epsilon)$
1	$\left\{\begin{array}{l}{[S \rightarrow a . S b],} \\ {[S \rightarrow . a S b],} \\ [S \rightarrow .]\}\end{array}\right\}$	s	$r(S \rightarrow \epsilon)$	
2	\{[S \rightarrow aS.b]\}		${ }^{s}$	
3 4	$\begin{aligned} & \{[S \rightarrow a S b .]\} \\ & \left\{\left[S^{\prime} \rightarrow S .\right]\right\} \end{aligned}$		$r(S \rightarrow a S b)$	$\begin{gathered} r(S \rightarrow a S b) \\ \quad \text { accept }) \end{gathered}$

Goto-table

state	symbol			
	a	b	$\#$	S
0	1			4
1	1			2
2		3		
3				
4				

Parsing $a a b b$

Stack	Input	Action
\$ 0	aabb\#	shift 1
\$ 01	abb\#	shift 1
\$ 011	$b b \#$	reduce $S \rightarrow \epsilon$
\$ 0112	$b b \#$	shift 3
\$01123	$b \#$	reduce $S \rightarrow a S b$
\$ 012	$b \#$	shift 3
\$ 0123	\#	reduce $S \rightarrow a S b$
\$ 04	\#	accept

Algorithm LR(1)-PARSER

type state = set of item;
var lookahead: symbol;
($*$ the next not yet consumed input symbol $*$)
S : stack of state;
proc scan;
($*$ reads the next symbol into lookahead $*$)
proc acc;
(* report successful parse; halt *)
proc err(message: string);
(* report error; halt *)

```
scan; push(S, qd);
forever do
    case action[top(S), lookahead] of
    shift: begin push(S, goto[top(S), lookahead]);
                        scan
            end ;
        reduce ( }X->\alpha)\mathrm{ : begin
                                pop}\mp@subsup{}{}{|\alpha|}(S); push(S, goto[top(S), X])
                        output(" X }->\alpha\mathrm{ ")
end ;
        accept: acc;
        error: err("...");
    end case
od
```


LR(1)-Conflicts

Set of $\operatorname{LR}(1)$-items I has a
shift-reduce-conflict:
if exists at least one item $\left[X \rightarrow \alpha \cdot a \beta, L_{1}\right] \in I$ and at least one item $\left[Y \rightarrow \gamma ., L_{2}\right] \in I$, and if $a \in L_{2}$.
reduce-reduce-conflict:
if it contains at least two items $\left[X \rightarrow \alpha ., L_{1}\right.$] and $\left[Y \rightarrow \beta\right.$.,$L_{2}$] where $L_{1} \cap L_{2} \neq \emptyset$.

A state with a conflict is called inadequate.

Example from G_{0}

$$
\begin{aligned}
& S_{0}^{\prime}=\operatorname{Closure}(\text { Start }) \quad S_{6}^{\prime}=\operatorname{Closure}\left(\operatorname{Succ}\left(S_{1}^{\prime},+\right)\right) \\
& =\{[S \rightarrow . E,\{\#\}] \\
& {[E \rightarrow . E+T,\{\#,+\}] \text {, }} \\
& {[E \rightarrow . T,\{\#,+\}] \text {, }} \\
& {[T \rightarrow . T * F,\{\#,+, *\}] \text {, }} \\
& {[T \rightarrow . F,\{\#,+, *\}] \text {, }} \\
& {[F \rightarrow .(E),\{\#,+, *\}] \text {, }} \\
& [F \rightarrow \text {.id, }\{\#,+, *\}]\} \\
& =\{[E \rightarrow E+. T,\{\#,+\}] \text {, } \\
& {[T \rightarrow . T * F,\{\#,+, *\}] \text {, }} \\
& {[T \rightarrow . F,\{\#,+, *\}] \text {, }} \\
& {[F \rightarrow .(E),\{\#,+, *\}] \text {, }} \\
& [F \rightarrow . \text { id, }\{\#,+, *\}]\} \\
& S_{9}^{\prime}=\operatorname{Closure}\left(\operatorname{Succ}\left(S_{6}^{\prime}, T\right)\right) \\
& =\{[E \rightarrow E+T .,\{\#,+\}] \text {, } \\
& [T \rightarrow T . * F,\{\#,+, *\}]\} \\
& S_{1}^{\prime}=\operatorname{Closure}\left(\operatorname{Succ}\left(S_{0}^{\prime}, E\right)\right) \\
& =\{[S \rightarrow E .,\{\#\}] \text {, } \\
& [E \rightarrow E .+T,\{\#,+\}]\} \\
& S_{2}^{\prime}=\operatorname{Closure}\left(\operatorname{Succ}\left(S_{0}^{\prime}, T\right)\right) \\
& =\{[E \rightarrow T .,\{\#,+\}] \text {, } \\
& [T \rightarrow T . * F,\{\#,+, *\}]\}
\end{aligned}
$$

Inadequate $\operatorname{LR}(0)$-states S_{1}, S_{2} und S_{9} are adequate after adding lookahead sets.
S_{1}^{\prime} shifts under "+", reduces under "\#".
S_{2}^{\prime} shifts under " $*$ ", reduces under " $\#$ " and " + ",
S_{9}^{\prime} shifts under "*", reduces under "\#" and "+".

Operator Precedence Parsing

G_{0} encodes operator precedence and associativity and used lookahead in an $L R(1)$ parser to disambiguate.

Idea: Use ambiguous grammar G_{0}^{\prime} :

$$
E \rightarrow E+E|E * E| \text { id } \mid(E)
$$

and operator precedence and associativity to disambiguate directly.

Deterministic $c h\left(G_{0}^{\prime}\right)$

... contains two states:

$$
\begin{array}{rlrl}
S_{7}: E & \rightarrow E+E . & S_{8}: E & \rightarrow E * E . \\
E & \rightarrow E .+E & E & \rightarrow E .+E \\
E & \rightarrow E . * E & E & \rightarrow E . * E
\end{array}
$$

with shift reduce conflicts.
In both states, the parser can reduce or shift either + or $*$.

$\operatorname{ch}\left(G_{0}^{\prime}\right)$ conflicts in detail

■ Consider the input id $+\mathbf{i d} * \mathbf{i d}$ and let the top of the stack be S_{7}.

- If reduce, then + has higher precendence than *
- If shift, then + has lower precendence than $*$

■ Consider the input id +id+id and let the top of the stack be S_{7}.

- If reduce, + is left-associative
- If shift, + is right-associative

Simple Implementation for Expression Parser

■ Model precedence/assoc with left and right precedence

- Shift/reduce mechanism can be implemented with loop and recursion:

```
Expression parseExpression(Precedence precedence) {
    Expression expr = parsePrimary();
    for (;;) {
        Token t = currToken;
        TokenKind kind = t.getKind();
        // if operator in lookahead has less left precedence: reduce
        if (kind.getLPrec() < precedence)
            return expr;
        // else shift
        nextToken();
        // and parse other operand with right precedence
        Expression right = parseExpression(kind.getRPrec());
        expr = factory.createBinaryExpression(t, expr, right);
    }
}
```

