Loop Transformations

Sebastian Hack
Saarland University

Compiler Construction
 W2015

COMPUTER SCIENCE

Loop Transformations: Example

matmul.c

Optimization Goals

- Increase locality (caches)
- Facilitate Prefetching (contiguous access patterns)
- Vectorization (SIMD instructions, contiguity, avoid divergence)

■ Parallelization (shared and non-shared memory systems)

Dependences

- True (flow) dependence (RAW = read after write)
- Anti dependence (WAR = write after read)
- Output dependence (WAW = write after write)

Anti and output dependences are called false dependences. They only arise when we consider memory cells instead of values. SSA eliminates false dependences by renaming.

$$
\begin{aligned}
& 1: \mathrm{a}=1 ; \\
& 2: \mathrm{b}=\mathrm{a} ; \\
& 3: \mathrm{a}=\mathrm{a}+\mathrm{b} ; \\
& 4: \mathrm{c}=\mathrm{a} ;
\end{aligned}
$$

If S_{j} is dependent on S_{i}, we write $S_{1} \delta S_{2}$. Sometimes we also indicate the kind of dependence.

$$
S_{1} \delta^{f} S_{2} \quad S_{1} \delta^{o} S_{3} \quad S_{2} \delta^{a} S_{3} \quad \ldots
$$

Dependences

■ Must be preserved for correctness
■ Impose order statement instances
■ Compilers represent dependences on syntactic entities (CFG nodes, AST nodes, statements, etc.)

- Each syntactic entity then stands for all its instances
- For scalar variables this is ok

■ For arrays (especially in loops) this is too coarse-grained

Dependences in Loops

$$
\begin{aligned}
\text { for } & i=1 \text { to } 3 \\
& 1: X[i]=Y[i]+1 \\
& 2: X[i]=X[i]+X[i-1]
\end{aligned}
$$

■ loop-independent flow dependence from S_{1} to S_{2}
■ loop-carried flow dependence from S_{2} to S_{2}

- loop-carried anti dependence from S_{2} to S_{2}

Example: GEMVER kernel

$$
\begin{aligned}
& \text { for (i=0; } i<N ; i++ \text {) } \\
& \text { for (} \mathrm{j}=0 \text {; } \mathrm{j}<\mathrm{N} \text {; } \mathrm{j}+\mathrm{+} \text {) } \\
& \text { S1: A[i,j] = A[i,j]+u1[i] * v1[j] } \\
& \text { + u2[i] * v2[j] } \\
& \text { for (} k=0 ; k<N ; k++ \text {) } \\
& \text { for (l=0; } 1<N ; 1++ \text {) } \\
& \text { S2: } \mathrm{x}[\mathrm{k}]=\mathrm{x}[\mathrm{k}]+\text { beta } * \mathrm{~A}[\mathrm{l}, \mathrm{k}] * \mathrm{y}[\mathrm{l}]
\end{aligned}
$$

Dependences in Loops

$$
\begin{aligned}
& \text { for } i=1 \text { to } 3 \\
& \text { 1: X[i] = Y[i] + } 1 \\
& \text { 2: } X[i]=X[i]+X[i-1]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X}[1]=\mathrm{Y}[1]+1 \\
& \mathrm{X}[1]=\mathrm{X}[1]+\mathrm{X}[0] \\
& \mathrm{X}[2]=\mathrm{Y}[2]+1 \\
& \mathrm{X}[2]=\mathrm{X}[2]+\mathrm{X}[1] \\
& \mathrm{X}[3]=\mathrm{Y}[3]+1 \\
& \mathrm{X}[3]=\mathrm{X}[3]+\mathrm{X}[2]
\end{aligned}
$$

How to determine dependences in loops?

- Conceptually, unroll loops entirely.
- Every instance has then one syntactic entity.
- Construct dependence graph.

In practice, this is infeasible: Loop bounds may not be constant; even if they were, the graph would be too big.

We need a more compact representation.

Iteration Space

The iteration space of loop is the set of all iterations of that loop.

```
for i = 1 to 3
    1: X[i] = Y[i] + 1
    2: X[i] = X[i] + X[i-1]
```

In the following, we'll be interested in loop (nests) whose iteration space can be described by the integer points inside a polyhedron. Each iteration of a loop nest of depth n is then given by a n-dimensional iteration vector.

Dependence Distance Vectors

$$
\begin{aligned}
& \text { for i }=1 \text { to } 3 \\
& \text { for } j=1 \text { to } 3 \\
& X[i, j]=X[i, j-1] \\
& +X[i-1, j-1]
\end{aligned}
$$

Dep. vectors $(0,1),(1,1)$
■ One way to represent dependences are distance vectors

- If statement instance \vec{t} is dependent on instance \vec{s} the distance vector for these two instances is

$$
\vec{d}=\vec{t}-\vec{s}
$$

- Uniform dependences are described by distance vectors that do not contain index variables.

Direction Vectors

■ Used to approximate distance vectors
■ Or, if dependences cannot be represented by distance vectors (non-uniform dependences)

■ Vector $\left(\rho_{1}, \ldots, \rho_{n}\right)$ of "directions" $\rho_{i} \in\{<, \leq,=, \geq,>, *\}$
■ Consider two statements s, t and all distance vectors of their instances. A direction vector ρ is legal for s and t if for all instances \vec{s} and \vec{t} it holds that

$$
\vec{s}[k] \rho[k] \vec{t} k k \quad \text { forall } 1 \leq k \leq n
$$

- Examples
- The distance vector $(0,1)$ corresponds to $(=,<)$
- The distance vector $(1,1)$ corresponds to $(<,<)$
- The distance vectors $\{(0, i) \mid-n \leq i \leq n\}$ correspond to ($<, *$)

Loop-Carried Dependences

```
for i = 1 to N
    for j = 1 to M
    A[i , j ] = A[i, j]
    B[i , j+1] = B[i, j]
    C[i+1, j+1] = B[i, j+1]
```

- Dependence on A not loop carried
- Dependence on B carried by j loop
- Dependence on C carried by i loop

Let k be the first non-= entry in the direction vector of a dependence: Dependence carried by the k-the nested loop. Dependence level is k (∞ if direction vector all $=$).

Loop Unswitching

```
for i = 1 to N
    for j = 1 to M
        if X[i] > 0
        S
        else
        T
```

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \\
& \text { if X[i] }>0 \\
& \text { for } j=1 \text { to } M \\
& S \\
& \text { else } \\
& \text { for } j=1 \text { to } M \\
& T
\end{aligned}
$$

- Hoist conditional as far outside as possible
- Enable other transformations

Loop Peeling

$$
\underset{S}{\operatorname{for}} i=1 \text { to } N
$$

$$
\begin{aligned}
& \text { if } N \geq 1 \\
& \text { S } \\
& \text { for i }=2 \text { to } N \\
& S
\end{aligned}
$$

- Align trip count to a certain number (multiple of N)
- Peeled iteration is a place where loop invariant code can be executed non-redundantly

Index Set Splitting

```
for i = 1 to N
    S
```

$$
\begin{aligned}
& \text { assert } 1 \leq M<N \\
& \text { for } i=1 \text { to } M \\
& \text { S } \\
& \text { for i }=M+1 \text { to } N \\
& S
\end{aligned}
$$

- Create specialized variants for different cases e.g. vectorization (aligned and contiguous accesses)
- Can be used to remove conditionals from loops

Loop Unrolling

for $i=1$ to N

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i \quad+=U) \\
& \quad S(i+0) \\
& \quad S(i+1) \\
& \quad . \quad . \\
& \text { } S(i+U-1) \\
& \text { for }(; i<N ; i++) \\
& \quad S(i)
\end{aligned}
$$

- Create more instruction-level parallelism inside the loop
- Less specualtion on OOO processors, less branching

■ Increases pressure on instruction / trace cache (code bloat)

Loop Fusion

```
for i = 1 to N
    S
for i = 1 to N
for i = 1 to N
    S
    T
    T
```

- Save loop control overhead
- Increase locality if both loops access same data

■ Increase instruction-level parallelism

- Important after inlining livrary functions

■ Not always legal: Dependences must be preserved

Loop Interchange

```
for i = 1 to N
    for j = 1 to M
        S
```

for $j=1$ to M
for $i=1$ to N
S

- Expose more locality
- Expose parallelism

■ Legality: Preserve data dependences, direction vector $(<,>)$ forbidden

Parallelization / Vectorization

$$
\begin{array}{cc}
\text { for } i \\
S
\end{array}=1 \text { to } N \quad \text { parallel for } i=1 \text { to } N
$$

■ Loop must not carry dependence
■ Vectorization nowadays uses SIMD code -> strip mining

Strip Mining

$$
\underset{S}{\text { for }} i=1 \text { to } N
$$

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i+=U) \\
& \text { for }(j=0 ; i<U ; j++) \\
& \quad S(i+j)
\end{aligned}
$$

- strip-mine + interchange $=$ tiling
- Vectorization is a kind of strip mining

