Loop Transformations

Sebastian Hack
Saarland University

Compiler Construction
W2015

SAARLAND
UNIVERSITY 54
I —

COMPUTER SCIENCE

Loop Transformations: Example

matmul.c

Optimization Goals

® Increase locality (caches)
m Facilitate Prefetching (contiguous access patterns)
m Vectorization (SIMD instructions, contiguity, avoid divergence)

m Parallelization (shared and non-shared memory systems)

Dependences

m True (flow) dependence (RAW = read after write)
® Anti dependence (WAR = write after read)
m Output dependence (WAW = write after write)
Anti and output dependences are called false dependences. They only arise

when we consider memory cells instead of values. SSA eliminates false
dependences by renaming.

If S; is dependent on S;, we write 51 6 S,.

1: a = 1; Sometimes we also indicate the kind of
2: b = a; d
ependence.
3: a=a+b)
4: c =

= as S167S, 5.6°S5; S,6°8;

Dependences

Must be preserved for correctness

Impose order statement instances

Compilers represent dependences on syntactic entities
(CFG nodes, AST nodes, statements, etc.)

Each syntactic entity then stands for all its instances

m For scalar variables this is ok

For arrays (especially in loops) this is too coarse-grained

Dependences in Loops

for i = 1 to 3
1: X[i] = Y[i] + 1
2: X[i] = X[i] + X[i-1]

m loop-independent flow dependence from S; to S,
m loop-carried flow dependence from S, to S,

m loop-carried anti dependence from S, to S,

Example: GEMVER kernel

for (i=0; i < N; i++)
for (j=0; j < N; j++)
S1: A[i,j] = A[i,jl+ull[i] * v1[j]
+ u2[i] * v2[j]

for (k=0; k < N; k++)
for (1=0; 1 < N; 1++)
S2: x[k] = x[k]+beta * A[1,k] * y[1]

Dependences in Loops

X[1]

for i = 1 to 3 iEé%
1: X[i] = Y[i]l + 1 X [2]

2: X[i] = X[1i] + X[i-1] X [3]

X [3]

How to determine dependences in loops?
m Conceptually, unroll loops entirely.
m Every instance has then one syntactic entity.

m Construct dependence graph.

Y[1]
X[1]
Y [2]
X[2]
Y [3]
X [3]

+ o+ 4+ + + o+

X [0]

X[1]

X[2]

In practice, this is infeasible: Loop bounds may not be constant; even if

they were, the graph would be too big.

We need a more compact representation.

Iteration Space

The iteration space of loop is the set of all iterations of that loop.

for i = 1 to 3
1: X[il]
2: X[il]

Y[i] + 1 I
X[i]l + X[i-1]

In the following, we'll be interested in loop (nests) whose iteration space
can be described by the integer points inside a polyhedron. Each iteration
of a loop nest of depth n is then given by a n-dimensional iteration vector.

Dependence Distance Vectors

X[i,j] = X[i,j-1]
+ X[i-1,j-1]

i

Dep. vectors (0,1),(1,1)

m One way to represent dependences are distance vectors

m |f statement instance t is dependent on instance § the distance vector

for these two instances is
d=t-5

m Uniform dependences are described by distance vectors that do not

contain index variables.

10

Direction Vectors

m Used to approximate distance vectors

m Or, if dependences cannot be represented by distance vectors
(non-uniform dependences)

m Vector (p1,...,pn) of "directions” p; € {<,<,=,>,>, %}

m Consider two statements s, t and all distance vectors of their
instances. A direction vector p is legal for s and t if for all instances §
and t it holds that

sTk] plk] tlk] forall 1< k <n

m Examples

— The distance vector (0,

0,1) corresponds to (=, <)
- The distance vector (1,1)
{(

1
1) corresponds to (<, <)
- The distance vectors {(0,/) | —n < i < n} correspond to (<, *)

11

Loop-Carried Dependences

for j to M
A, j 1 = Ali, jl
B[i , j+1] = B[i, j]
cli+1, j+1] = B[i, j+1]

m Dependence on A not loop carried
m Dependence on B carried by j loop

m Dependence on C carried by i loop

Let k be the first non-= entry in the direction vector of a dependence:
Dependence carried by the k-the nested loop. Dependence level is k (oo if

direction vector all =).

12

Loop Unswitching

£ . 1 to N for 1 = 1
or i = o)
. if X[i]
for j =1 to M for i
if X[i] > 0 < J
S
else
else for]
T
T

m Hoist conditional as far outside as possible

m Enable other transformations

to N
> 0

1 to M

1 to M

13

Loop Peeling

for i = 1 to N S

m Align trip count to a certain number (multiple of N)

m Peeled iteration is a place where loop invariant code can be executed
non-redundantly

14

Index Set Splitting

assert 1 < M < N
for i =1 to M
S
for i = M+ 1 to N
S

for i = 1 to N

m Create specialized variants for different cases
e.g. vectorization (aligned and contiguous accesses)

m Can be used to remove conditionals from loops

15

Loop Unrolling

for (i = 0; 1 < n; i += U)
S(i+0)
. S(i+1)
for i = 1 to N
S S(i+U-1)
for (; 1 < Nj; i++)
S(i)

m Create more instruction-level parallelism inside the loop
B Less specualtion on OOO processors, less branching

B Increases pressure on instruction / trace cache (code bloat)

16

Loop Fusion

f i = 1 to N
ogl ° for i = 1 to N
S
f i =
or i 1 to N T
T

Save loop control overhead

Increase locality if both loops access same data

[|

[|

m Increase instruction-level parallelism

m Important after inlining livrary functions
[

Not always legal: Dependences must be preserved

17

Loop Interchange

for i = 1 to N
for j =1 to M

m Expose more locality

m Expose parallelism

for j =
for i

1 to M

1 to N

m Legality: Preserve data dependences, direction vector (<, >) forbidden

18

Parallelization / Vectorization

for i = 1 to N parallel for i = 1 to N
S S

m Loop must not carry dependence

m Vectorization nowadays uses SIMD code -> strip mining

19

Strip Mining

for i = 1 to N for (1 : 0 1 < n ol -.+= v
5 for (j = 0; 1 < U; j++)
S(i + j)

B strip-mine + interchange = tiling

m Vectorization is a kind of strip mining

20

