
Loop Transformations

Sebastian Hack
Saarland University

Compiler Construction
W2015

computer science

saarland
university

1



Loop Transformations: Example

matmul.c

2



Optimization Goals

� Increase locality (caches)

� Facilitate Prefetching (contiguous access patterns)

� Vectorization (SIMD instructions, contiguity, avoid divergence)

� Parallelization (shared and non-shared memory systems)

3



Dependences

� True (flow) dependence (RAW = read after write)
� Anti dependence (WAR = write after read)
� Output dependence (WAW = write after write)

Anti and output dependences are called false dependences. They only arise
when we consider memory cells instead of values. SSA eliminates false
dependences by renaming.

1: a = 1;
2: b = a;
3: a = a + b;
4: c = a;

If Sj is dependent on Si , we write S1 δ S2.
Sometimes we also indicate the kind of
dependence.

S1 δ
f S2 S1 δ

o S3 S2 δ
a S3 . . .

4



Dependences

� Must be preserved for correctness

� Impose order statement instances

� Compilers represent dependences on syntactic entities
(CFG nodes, AST nodes, statements, etc.)

� Each syntactic entity then stands for all its instances

� For scalar variables this is ok

� For arrays (especially in loops) this is too coarse-grained

5



Dependences in Loops

for i = 1 to 3
1: X[i] = Y[i] + 1
2: X[i] = X[i] + X[i-1]

� loop-independent flow dependence from S1 to S2

� loop-carried flow dependence from S2 to S2

� loop-carried anti dependence from S2 to S2

6



Example: GEMVER kernel

for (i=0; i < N; i++)
for (j=0; j < N; j++)

S1: A[i,j] = A[i,j]+u1[i] * v1[j]
+ u2[i] * v2[j]

for (k=0; k < N; k++)
for (l=0; l < N; l++)

S2: x[k] = x[k]+beta * A[l,k] * y[l]

7



Dependences in Loops

for i = 1 to 3
1: X[i] = Y[i] + 1
2: X[i] = X[i] + X[i-1]

X[1] = Y[1] + 1
X[1] = X[1] + X[0]
X[2] = Y[2] + 1
X[2] = X[2] + X[1]
X[3] = Y[3] + 1
X[3] = X[3] + X[2]

How to determine dependences in loops?

� Conceptually, unroll loops entirely.
� Every instance has then one syntactic entity.
� Construct dependence graph.

In practice, this is infeasible: Loop bounds may not be constant; even if
they were, the graph would be too big.

We need a more compact representation.

8



Iteration Space

The iteration space of loop is the set of all iterations of that loop.

for i = 1 to 3
1: X[i] = Y[i] + 1
2: X[i] = X[i] + X[i-1]

i

In the following, we’ll be interested in loop (nests) whose iteration space
can be described by the integer points inside a polyhedron. Each iteration
of a loop nest of depth n is then given by a n-dimensional iteration vector.

9



Dependence Distance Vectors

for i = 1 to 3
for j = 1 to 3

X[i,j] = X[i,j-1]
+ X[i-1,j-1]

i

j

Dep. vectors (0, 1), (1, 1)

� One way to represent dependences are distance vectors

� If statement instance ~t is dependent on instance ~s the distance vector
for these two instances is

~d = ~t − ~s

� Uniform dependences are described by distance vectors that do not
contain index variables.

10



Direction Vectors

� Used to approximate distance vectors

� Or, if dependences cannot be represented by distance vectors
(non-uniform dependences)

� Vector (ρ1, . . . , ρn) of “directions” ρi ∈ {<,≤,=,≥, >, ∗}

� Consider two statements s, t and all distance vectors of their
instances. A direction vector ρ is legal for s and t if for all instances ~s
and ~t it holds that

~s[k] ρ[k] ~t[k] forall 1 ≤ k ≤ n

� Examples
– The distance vector (0, 1) corresponds to (=, <)
– The distance vector (1, 1) corresponds to (<,<)
– The distance vectors {(0, i) | −n ≤ i ≤ n} correspond to (<, ∗)

11



Loop-Carried Dependences

for i = 1 to N
for j = 1 to M

A[i , j ] = A[i, j]
B[i , j+1] = B[i, j]
C[i+1, j+1] = B[i, j+1]

� Dependence on A not loop carried
� Dependence on B carried by j loop
� Dependence on C carried by i loop

Let k be the first non-= entry in the direction vector of a dependence:
Dependence carried by the k-the nested loop. Dependence level is k (∞ if
direction vector all =).

12



Loop Unswitching

for i = 1 to N
for j = 1 to M

if X[i] > 0
S

else
T

for i = 1 to N
if X[i] > 0

for j = 1 to M
S

else
for j = 1 to M

T

� Hoist conditional as far outside as possible

� Enable other transformations

13



Loop Peeling

for i = 1 to N
S

if N ≥ 1
S
for i = 2 to N

S

� Align trip count to a certain number (multiple of N)

� Peeled iteration is a place where loop invariant code can be executed
non-redundantly

14



Index Set Splitting

for i = 1 to N
S

assert 1 ≤ M < N
for i = 1 to M

S
for i = M + 1 to N

S

� Create specialized variants for different cases
e.g. vectorization (aligned and contiguous accesses)

� Can be used to remove conditionals from loops

15



Loop Unrolling

for i = 1 to N
S

for (i = 0; i < n; i += U)
S(i+0)
S(i+1)
...
S(i+U-1)

for (; i < N; i++)
S(i)

� Create more instruction-level parallelism inside the loop

� Less specualtion on OOO processors, less branching

� Increases pressure on instruction / trace cache (code bloat)

16



Loop Fusion

for i = 1 to N
S

for i = 1 to N
T

for i = 1 to N
S
T

� Save loop control overhead
� Increase locality if both loops access same data
� Increase instruction-level parallelism
� Important after inlining livrary functions
� Not always legal: Dependences must be preserved

17



Loop Interchange

for i = 1 to N
for j = 1 to M

S

for j = 1 to M
for i = 1 to N

S

� Expose more locality
� Expose parallelism
� Legality: Preserve data dependences, direction vector (<,>) forbidden

18



Parallelization / Vectorization

for i = 1 to N
S

parallel for i = 1 to N
S

� Loop must not carry dependence
� Vectorization nowadays uses SIMD code -> strip mining

19



Strip Mining

for i = 1 to N
S

for (i = 0; i < n; i += U)
for (j = 0; i < U; j++)

S(i + j)

� strip-mine + interchange = tiling
� Vectorization is a kind of strip mining

20


