Lexical Analysis

Reinhard Wilhelm, Sebastian Hack, Mooly Sagiv
Saarland University, Tel Aviv University

W2015

Saarland University, Computer Science

Subjects

■ Role of lexical analysis
■ Regular languages, regular expressions

- Finite-state machines
- From regular expressions to finite-state machines
- A language for specifying lexical analysis
- The generation of a scanner

■ Flex

Lexical Analysis (Scanning)

- Functionality

> Input: program as sequence of characters
> Output: program as sequence of symbols (tokens)

■ Report errors, symbols illegal in the programming language
■ Additional bookkeeping:

- Identify language keywords and standard identifiers
- Eliminate "whitespace", e.g., consecutive blanks and newlines
- Track text coordinates for error report generation
- Construct table of all symbols occurring (symbol table)

Automatic Generation of Lexical Analyzers

■ The symbols of programming languages can be specified by regular expressions.

- Examples:
- program as a sequence of characters.
- (alpha (alpha | digit)*) for identifiers
_ "/*'، until "'*/"، for comments
■ The recognition of input strings can be performed by a finite-state machine.
- A table representation or a program for the automaton is automatically generated from a regular expression.

Automatic Generation of Lexical Analyzers cont'd

Notations

A language L is a set of words x over an alphabet $\boldsymbol{\Sigma}$.

$a_{1} a_{2} \ldots a_{n}$,	a word over $\Sigma, a_{i} \in \Sigma$
ε	The empty word
Σ^{n}	The words of length n over Σ
Σ^{*}	The set of finite words over Σ
Σ^{+}	The set of non-empty finite words over Σ
x.y	The concatenation of x and y
Language	Operations

$L_{1} \cup L_{2}$		Union
$L_{1} L_{2}$	$=\left\{x \cdot y \mid x \in L_{1}, y \in L_{2}\right\}$	Concatenation
\bar{L}	$=\sum^{*}-L$	Complement
L^{n}	$=\left\{x_{1} \ldots x_{n} \mid x_{i} \in L, 1 \leq i \leq n\right\}$	
L^{*}	$=\bigcup_{n \geq 0} L^{n}$	Closure
L^{+}	$=\bigcup_{n \geq 1} L^{n}$	

Regular Languages

Defined inductively
■ \emptyset is a regular language over Σ
■ $\{\varepsilon\}$ is a regular language over Σ
■ For all $a \in \Sigma,\{a\}$ is a regular language over Σ
■ If R_{1} and R_{2} are regular languages over Σ, then so are:

- $R_{1} \cup R_{2}$,
- $R_{1} R_{2}$, and
- R_{1}^{*}

Regular Expressions and the Denoted Regular Languages

Defined inductively
■ $\underline{\emptyset}$ is a regular expression over Σ denoting \emptyset,

- $\underline{\varepsilon}$ is a regular expression over $\boldsymbol{\Sigma}$ denoting $\{\varepsilon\}$,

■ For all $a \in \Sigma, a$ is a regular expression over Σ denoting $\{a\}$,
■ If r_{1} and r_{2} are regular expressions over Σ denoting R_{1} and R_{2}, resp., then so are:

- $\left(r_{1} \mid r_{2}\right)$, which denotes $R_{1} \cup R_{2}$,
- $\left(r_{1} r_{2}\right)$, which denotes $R_{1} R_{2}$, and
- $\left(r_{1}\right)^{*}$, which denotes R_{1}^{*}.
- Metacharacters, $\underline{\emptyset}, \underline{\varepsilon}, \underline{(}, \underline{)}, \underline{1}, \underline{*}$ don't really exist, are replaced by their non-underlined versions.
Clash between characters in Σ and metacharacters $\left\{(\underline{(}), \underline{,},{ }_{-}^{*}\right\}$

Example

Expression	Language	Example words
$a \mid b$	$\{a, b\}$	a, b
$a b^{*} a$	$\{a\}\{b\}^{*}\{a\}$	$a a, a b a, a b b a, a b b b a, \ldots$
$(a b)^{*}$	$\{a b\}^{*}$	$\varepsilon, a b, a b a b, \ldots$
$a b b a$	$\{a b b a\}$	$a b b a$

Automata

- process input
- make transitions from configurations to configurations;
- configurations consist of (the rest of) the input and some memory;

■ the memory may be small, just one variable with finitely many values,
■ but the memory may also be able to grow without bound, adding and removing values at one of its ends;

- the type of memory determines its ability to recognize a class of languages,

Finite State Machine

The simplest type of automaton, its memory consists of only one variable, which can store one out of finitely many values, its states,

A Non-Deterministic Finite-State Machine (NFSM)

$M=\left\langle\Sigma, Q, \Delta, q_{0}, F\right\rangle$ where:
■ Σ - finite alphabet
■ Q - finite set of states

- $q_{0} \in Q$ - initial state

■ $F \subseteq Q$ - final states
■ $\Delta \subseteq Q \times(\Sigma \cup\{\varepsilon\}) \times Q$ - transition relation
May be represented as a transition diagram
■ Nodes - States

- q_{0} has a special "entry" mark

■ final states doubly encircled

- An edge from p into q labeled by a if $(p, a, q) \in \Delta$

Example: Integer and Real Constants

	$\mathrm{Di} \in\{0,1, \ldots, 9\}$	\cdot	E	ε
0	$\{1,2\}$	\emptyset	\emptyset	\emptyset
1	$\{1\}$	\emptyset	\emptyset	\emptyset
2	$\{2\}$	$\{3\}$	\emptyset	\emptyset
3	$\{4\}$	\emptyset	\emptyset	\emptyset
4	$\{4\}$	\emptyset	$\{5\}$	$\{7\}$
5	$\{6\}$	$q_{0}=0$		
6	$\{7\}$	\emptyset	\emptyset	\emptyset
7	\emptyset	\emptyset	\emptyset	\emptyset

Finite-state machines - Scanners

Finite-state machines

- get an input word,
- start in their initial state,
- make a series of transitions under the characters constituting the input word,

■ accept (or reject).

Scanners

- get an input string (a sequence of words),
- start in their initial state,
- attempt to find the end of the next word,
- when found, restart in their initial state with the rest of the input,
- terminate when the end of the input is reached or an error is encountered.

Maximal Munch strategy

Find longest prefix of remaining input that is a legal symbol.
■ first input character of the scanner - first "non-consumed" character,
■ in final state, and exists transition under the next character: make transition and remember position,

- in final state, and exists no transition under the next character: Symbol found,
- actual state not final and no transition under the next character: backtrack to last passed final state
- There is none: Illegal string
- Otherwise: Actual symbol ended there.

Warning: Certain overlapping symbol definitions will result in quadratic runtime: Example: (a|a*;)

Other Example Automata

- integer-constant

■ real-constant

■ identifier

■ string

■ comments

The Language Accepted by a Finite-State Machine

■ $M=\left\langle\Sigma, Q, \Delta, q_{0}, F\right\rangle$
■ For $q \in Q, w \in \Sigma^{*},(q, w)$ is a configuration
■ The binary relation step on configurations is defined by:

$$
(q, a w) \vdash_{M}(p, w)
$$

if $(q, a, p) \in \Delta$

- The reflexive transitive closure of \vdash_{M} is denoted by \vdash_{M}^{*}

■ The language accepted by M

$$
L(M)=\left\{w\left|w \in \Sigma^{*}\right| \exists q_{f} \in F:\left(q_{0}, w\right) \vdash_{M}^{*}\left(q_{f}, \varepsilon\right)\right\}
$$

From Regular Expressions to Finite Automata

Theorem

(i) For every regular language R, there exists an NFSM M, such that $L(M)=R$.
(ii) For every regular expression r, there exists an NFSM that accepts the regular language defined by r.

A Constructive Proof for (ii) (Algorithm)

- A regular language is defined by a regular expression r

■ Construct an "NFSM" with one final state, q_{f}, and the transition

■ Decompose r and develop the NFSM according to the following rules

until only transitions under single characters and ε remain.

Examples

■ $a(a \mid 0)^{*}$ over $\Sigma=\{a, 0\}$

- Identifier
- String

Nondeterminism

■ Several transitions may be possible under the same character in a given state

■ ε-moves (next character is not read) may "compete" with non- ε-moves.
■ Deterministic simulation requires "backtracking"

Deterministic Finite-State Machine (DFSM)

■ No ε-transitions

- At most one transition from every state under a given character, i.e. for every $q \in Q, a \in \Sigma$,

$$
\left|\left\{q^{\prime} \mid\left(q, a, q^{\prime}\right) \in \Delta\right\}\right| \leq 1
$$

From Non-Deterministic to Deterministic Automata

Theorem

For every NFSM, $M=\left\langle\Sigma, Q, \Delta, q_{0}, F\right\rangle$ there exists a DFSM, $M^{\prime}=\left\langle\Sigma, Q^{\prime}, \delta, q_{0}^{\prime}, F^{\prime}\right\rangle$ such that $L(M)=L\left(M^{\prime}\right)$.

A Scheme of a Constructive Proof (Subset Construction) Construct a DFSM whose states are sets of states of the NFSM. The DFSM simulates all possible transition paths under an input word in parallel.
Set of new states $\left\{\left\{q_{1}, \ldots, q_{n}\right\} \mid n \geq 1 \wedge \exists w \in \Sigma^{*}:\left(q_{0}, w\right) \vdash_{M}^{*}\left(q_{i}, \varepsilon\right)\right\}$

The Construction Algorithm

Used in the construction: the set of ε-Successors, $\varepsilon-S S(q)=\left\{p \mid(q, \varepsilon) \vdash_{M}^{*}(p, \varepsilon)\right\}$

■ Starts with $q_{0}^{\prime}=\varepsilon-S S\left(q_{0}\right)$ as the initial DFSM state.

- Iteratively creates more states and more transitions.

■ For each DFSM state $S \subseteq Q$ already constructed and character $a \in \Sigma$,

$$
\delta(S, a)=\bigcup_{q \in S} \bigcup_{(q, a, p) \in \Delta} \varepsilon-S S(p)
$$

if non-empty add new state $\delta(S, a)$ if not previously constructed; add transition from S to $\delta(S, a)$.

- A DFSM state S is accepting (in F^{\prime}) if there exists $q \in S$ such that $q \in F$

Example: $a(a \mid 0)^{*}$

DFSM minimization

DFSM need not have minimal size, i.e. minimal number of states and transitions. q and p are undistinguishable (have the same acceptance behavior) iff
for all words $w(q, w) \vdash_{M}^{*}$ and $(p, w) \vdash_{M}^{*}$ lead into either F^{\prime} or $Q^{\prime}-F^{\prime}$.

Undistinguishability is an equivalence relation. Goal: merge undistinguishable states \equiv consider equivalence classes as new states.

DFSM minimization algorithm

■ Input a DFSM $M=\left\langle\Sigma, Q, \delta, q_{0}, F\right\rangle$
■ Iteratively refine a partition of the set of states, where each set in the partition consists of states so far undistinguishable.

■ Start with the partition $\quad \Pi=\{F, Q-F\}$
■ Refine the current Π by splitting sets $S \in \Pi$ if there exist $q_{1}, q_{2} \in S$ and $a \in \Sigma$ such that

- $\delta\left(q_{1}, a\right) \in S_{1}$ and $\delta\left(q_{2}, a\right) \in S_{2}$ and $S_{1} \neq S_{2}$

■ Merge sets of undistinguishable states into a single state.

Example: $a(a \mid 0)^{*}$

A Language for specifying lexical analyzers
$(0|1| 2|3| 4|5| 6|7| 8 \mid 9)(0|1| 2|3| 4|5| 6|7| 8 \mid 9)^{*}$ $\left(\varepsilon \mid .(0|1| 2|3| 4|5| 6|7| 8 \mid 9)(0|1| 2|3| 4|5| 6|7| 8 \mid 9)^{*}\right.$
$(\varepsilon \mid E(0|1| 2|3| 4|5| 6|7| 8 \mid 9)(0|1| 2|3| 4|5| 6|7| 8 \mid 9)))$

Descriptional Comfort

Character Classes:

Identical meaning for the DFSM (exceptions!), e.g.,
$l e=\mathrm{a}-\mathrm{zA}-\mathrm{Z}$
$d i=0-9$
Efficient implementation: Addressing the transitions indirectly through an array indexed by the character codes.

Symbol Classes:
Identical meaning for the parser, e.g., Identifiers
Comparison operators
Strings

Descriptional Comfort cont'd

Sequences of regular definitions:

$$
\begin{aligned}
A_{1} & =R_{1} \\
A_{2} & =R_{2} \\
& \cdots \\
A_{n} & =R_{n}
\end{aligned}
$$

Sequences of Regular Definitions

Goal: Separate final states for each definition

1. Substitute right sides for left sides
2. Create an NFSM for every regular expression separately;
3. Merge all the NFSMs using ε transitions from the start state;
4. Construct a DFSM;
5. Minimize starting with partition

$$
\left\{F_{1}, F_{2}, \ldots, F_{n}, Q-\bigcup_{i=1}^{n} F_{i}\right\}
$$

Flex Specification

Definitions
\% \%
Rules
\% \%
C-Routines

Flex Example

```
%{
extern int line_number;
extern float atof(char *);
%}
DIG [0-9]
LET [a-zA-Z]
%%
[=#<>+-*] { return(*yytext); }
({DIG}+) { yylval.intc = atoi(yytext); return(301); }
({DIG}*\.{DIG}+(E(\+|\-)?{DIG}+)?)
    {yylval.realc = atof(yytext); return(302); }
\"(\\.|[^\"\\])*\" { strcpy(yylval.strc, yytext);
    return(303); }
"<="
    { return(304); }
    { return(305); }
    { return(306); }
```


Flex Example cont'd

```
ARRAY { return(307); }
BOOLEAN { return(308); }
DECLARE { return(309); }
{LET}({LET}|{DIG})* { yylval.symb = look_up(yytext);
    return(310); }
[\t]+ { /* White space */ }
    { line_number++; }
    { fprintf(stderr,
    "WARNING: Symbol '%c' is illegal, ignored!\n", *yytext);}
%%
```

