
Global Value Numbering

Sebastian Hack
hack@cs.uni-saarland.de

8. Dezember 2015

computer science

saarland
university

1

Value Numbering

a := 2
x := a + 1

a := 3
x := a + 1

y := a + 1

� Replace second computation of a + 1 with a copy from x

2

Value Numbering

� Goal: Eliminate redundant computations

� Find out if two variables have the same value at given program point

– In general undecidable

� Potentially replace computation of latter variable with contents of the
former

� Resort to Herbrand equivalence:

– Do not consider the interpretation of operators
– Two expressions are equal if they are structurally equal

� This lecture: A costly program analysis which finds all Herbrand
equivalences in a program and a “light-weight” version that is often
used in practice.

3

Herbrand Interpretation

� The Herbrand interpretation I of an n-ary operator ω is given as

I(ω) : T n → T I(ω)(t1, . . . , tn) := ω(t1, . . . , tn)

Especially, constants are mapped to themselves

� With a state σ that maps variables to terms

σ : V → T

� we can define the Herbrand semantics 〈t〉σ of a term t

〈t〉σ :=

{
σ(v) if t = v is a variable

I(ω)(〈x1〉σ, . . . , 〈xn〉σ) if t = ω(x1, . . . , xn)

4

Programs with Herbrand Semantics

� We now interpret the program with respect to the Herbrand semantics

� For an assignment
x ← t

the semantics is defined by:

Jx ← tKσ := σ [〈t〉σ/x]

� The state after executing a path p : `1, . . . , `n starting with state σ0
is then:

JpKσ0 := (J`nK ◦ · · · ◦ J`1K)σ0

� Two expressions t1 and t2 are Herbrand equivalent at a program
point ` iff

∀p : r , . . . , `. 〈t1〉JpKσ0 = 〈t2〉JpKσ0

5

Kildall’s Analysis

� Track Herbrand equivalences with a forward data flow analysis

� A lattice element is an equivalence class of the terms and variables of
the program

� The equivalence relation is a congruence relation w.r.t. to the
operators in our expression language.
For each operator ω, each eq. relation R, and e, e1, · · · ∈ V ∪ T :

e R (e1 ω e2) =⇒ e1 R e ′1 =⇒ e2 R e ′2 =⇒ e R (e ′1 ω e ′2)

� Two equivalence classes are joined by intersecting them
R t S := R ∩ S := {(a, b) | a R b ∧ a S b}

� ⊥ = {(x , y) | x , y ∈ V ∪ T}
+ optimistically assume all variables/terms are equivalent

� Initialize with > = {(x , x) | x ∈ V ∪ T}
+ at the beginning, nothing is equivalent

6

Kildall’s Analysis
Example

>

>

a := 2
x := a + 1

>

{[a, 2], [x , a + 1, 2 + 1]}

a := 3
x := a + 1

>

{[a, 3], [x , a + 1, 3 + 1]}

y := a + 1

{[x , a + 1]}

{[x , y , a + 1]}

7

Kildall’s Analysis
Transfer Functions

. . . of an assignment
` : x ← t

� Compute a new partition checking (in the old partition) who is
equivalent if we replace x by t

Jx ← tK] R := {(t1, t2) | t1[t/x] R t2[t/x]}

8

Kildall’s Analysis
Example

x := 0
y := x + 1

>

⊥

x := x + 1

⊥

⊥

y := y + 1

⊥

⊥

9

Kildall’s Analysis
Example

x := 0
y := x + 1

>

{[x , 0], [y , x + 1, 0 + 1]}

x := x + 1

{[y , x + 1]}

{[x , y]}

y := y + 1

{[y , x + 1]}

{[x , y]}

10

Kildall’s Analysis
Comments

� Kildall’s Analysis is sound and complete
it discovers all Herbrand equivalences in the program

� Näıve implementations suffer from exponential explosion
(pathological):

– Because the equivalence relation must be congruence, size of
eq. classes can explode:

R = {[a, b], [c , d], [e, f], [x , a + c , a + d , b + c , b + d],

[y , x + e, x + f , (a + c) + e, . . . , (b + d) + f]}

� In practice: Use value graph.
Do not make congruence explicit in representation.

� Theoretical results (Gulwani & Necula 2004):
– Even in acyclic programs, detecting all equivalences

can lead to exponential-sized value graphs
– Detecting only equivalences among terms in the program is polynomial

(linear-sized representation of equivalences per program point)

11

Strong Equivalence DAGs (SED)

A SED G is a DAG (N,E). Let N be the set of nodes of the graph. Every
node n is a pair (V , t) of a set of variables and a type

t ::= ⊥ | c | ⊕(n1, . . . , nk)

A type ⊕(n1, . . . , nk) indicates, that

{(n, n1), . . . , (n, nk)} ∈ E

A node n in the SED stands for a set of terms T (V , t)

T (V ,⊥) = V

T (V , c) = V ∪ {c}
T (V ,⊕(n1, . . . , nk)) = V ∪ {⊕(e1, . . . , ek) | ei ∈ T (V , ni)}

12

Strong Equivalence DAGs (SED)

Fig. 2. This figure shows a program and the execution of our algorithm on it.
Gi, shown in dotted box, represents the SED at program point Li.

In figures showing SEDs, we omit the set delimiters “{” and “}”, and rep-
resent a node h{x1, . . , xn}, ti as hx1, . . , xn, ti. Figure 2 shows a program and
the SEDs computed by our algorithm at various points. As an example, note
that Terms(NodeG4(u)) = {u} [{F (z, ↵) | ↵ 2 {x, y}} [{F (F (↵1, ↵2), ↵3) |
↵1, ↵2, ↵3 2 {x, y}}. Hence, G4 |= u = F (z, x). Note that an SED represents
compactly a possibly-exponential number of equivalent terms.

3.2 The Assignment Operation

Let G be an SED that represents the Herbrand equivalences before an assignment
node x := e. The SED that represents the Herbrand equivalences after the
assignment node can be obtained by using the following algorithm. SED G4 in
Figure 2 shows an example of the Assignment operation.

1 Assignment(G, x := e) =

2 G0 := G;

3 let hV1, t1i = GetNode(G0, e) in

4 let hV2, t2i = NodeG0(x) in

5 if t1 6= t2 then G0 := G0 � {hV1, t1i, hV2, t2i};
6 G0 := G0 [{hV1 [{x}, t1i, hV2 � {x}, t2i};
7 return G0;

216

From: Gulwani & Necula. A Polynomial-Time Algorithm for Global Value Numbering. SAS 2004

13

The Alpern, Wegman, Zadeck (AWZ) Algorithm

� Incomplete

� Flow-insensitive

– does not compute the equivalences for every program point but sound
equivalences for the whole program

� Uses SSA

– Control-flow joins are represented by φs
– Treat φs like every other operator (cause for incompleteness)
– Source of imprecision

� Interpret the SSA data dependence graph as a finite automaton and
minimize it

– Refine partitions of “equivalent states”
– Using Hopcroft’s algorithm, this can be done in O(e · log e)

14

The AWZ Algorithm

� In contrast to finite automata, do not create two partitions but a
class for every operator symbol

– Note that the φ’s block is part of the operator
– Two φs from different blocks have to be in different classes

� Optimistically place all nodes with the same operator symbol in the
same class

– Finds the least fixpoint
– You can also start with singleton classes and merge but this will

(in general) not give the least fixpoint

� Successively split class when two nodes in the class are detected
not equivalent

15

The AWZ Algorithm
Example

x := 0
y := 0

x := x + 1
y := y + 1

16

The AWZ Algorithm
Example

x0 := 0
y0 := 0

1

x1 := φ2(x2, x0)
y1 := φ2(y2, y0)

2
x2 := x1 + 1
y2 := y1 + 1

3

17

The AWZ Algorithm
Example

φ2 x1

+ x2 0 x0

1

φ2 y1

+ y2 0 y0

1

18

The AWZ Algorithm
Example

φ x1, y1

+ x2, y2 0 x0, y0

1

19

Kildall compared to AWZ

1

a0 := 2
x0 := a0 + 1

2
a1 := 3
x1 := a1 + 1

3

a2 := φ4(a0, a1)
x2 := φ4(x0, x1)
y0 := a2 + 1

4

20

Kildall compared to AWZ

+ y0 φ4 x2

φ4 a2 + x0 + x1

2 a0 3 a1 1

21

Kildall compared to AWZ

+ y0 φ4 x2

φ4 a2 + x0 + x1

2 a0 3 a1 1

22

