Global Value Numbering

Sebastian Hack
hack@cs.uni-saarland.de

8. Dezember 2015

SAARLAND iy
UNIVERSITY B
I —
COMPUTER SCIENCE

Value Numbering

a = 2 a = 3
x = a+1 x = a+1
y=a+1

B Replace second computation of a + 1 with a copy from x

N

Value Numbering

m Goal: Eliminate redundant computations

m Find out if two variables have the same value at given program point
- In general undecidable

m Potentially replace computation of latter variable with contents of the
former

m Resort to Herbrand equivalence:

- Do not consider the interpretation of operators
- Two expressions are equal if they are structurally equal

m This lecture: A costly program analysis which finds all Herbrand
equivalences in a program and a “light-weight” version that is often
used in practice.

Herbrand Interpretation

m The Herbrand interpretation Z of an n-ary operator w is given as
I(w): T"=T Z(w)(tr,...,tn) = w(tr,..., tn)
Especially, constants are mapped to themselves
m With a state o that maps variables to terms
c:V—->T

m we can define the Herbrand semantics (t)o of a term ¢

(o := {U(V) if t = v is a variable
T Z@) () xn)o) i E = w(x, - x)

Programs with Herbrand Semantics

B We now interpret the program with respect to the Herbrand semantics

m For an assignment
X<t

the semantics is defined by:
[x « t]o = o [(t)o/x]

m The state after executing a path p: /1,..., ¢, starting with state o9
is then:

[ploo == ([£al o - - - o [fa]) o0

m Two expressions t; and t are Herbrand equivalent at a program
point £ iff

Vp:r,... L <t1>[[p]]00 = <t2>[[p]]0’0

Kildall's Analysis

Track Herbrand equivalences with a forward data flow analysis

A lattice element is an equivalence class of the terms and variables of
the program

The equivalence relation is a congruence relation w.r.t. to the
operators in our expression language.
For each operator w, each eq. relation R, and e, e;,--- € VU T:
/ / / /
eR(etwer) = et Reg = e Rey = eR (g we)
Two equivalence classes are joined by intersecting them

RUS:=RnNS:={(a,b)|aRbAaS b}

L={xy) [x,yeVUT}
i optimistically assume all variables/terms are equivalent

Initialize with T = {(x,x) | x € VU T}
1= at the beginning, nothing is equivalent

Kildall's Analysis

Example

T

a+1

a = 3
= a+1

{la,2],[x,a+ 1,2+ 1]}

{la,3], x,a+ 1,3+ 1]}

{bx;a+ 1}

y=a+1

{lx.y,a+1]}

Kildall's Analysis

Transfer Functions

. of an assignment
l:x+t

m Compute a new partition checking (in the old partition) who is
equivalent if we replace x by t

[x « t]* R := {(t1, &2) | t1[t/x] R t2[t/x]}

Kildall's Analysis

Example

Kildall's Analysis

Example

T

0
x+1

X
I

{[x,0],ly,x+1,0+1]}

{[Yax+1]} /_\ {[y,X—|—1]}

[RI23] gy
{bxoy]) J (b1}

10

Kildall's Analysis

Comments

m Kildall's Analysis is sound and complete
it discovers all Herbrand equivalences in the program

m Naive implementations suffer from exponential explosion
(pathological):
- Because the equivalence relation must be congruence, size of
eq. classes can explode:

R ={[a, b],[c,d],[e,f],[x,a+ c,a+d, b+ c,b+d],
[y, x+e,x+f,(a+c)+e,....,(b+d)+f]}

m In practice: Use value graph.
Do not make congruence explicit in representation.

m Theoretical results (Gulwani & Necula 2004):
- Even in acyclic programs, detecting all equivalences
can lead to exponential-sized value graphs
- Detecting only equivalences among terms in the program is polynomial
(linear-sized representation of equivalences per program point)

11

Strong Equivalence DAGs (SED)

A SED G is a DAG (N, E). Let N be the set of nodes of the graph. Every
node n is a pair (V,t) of a set of variables and a type

to=1|c|®(n,...,nk)
A type ®(n1,..., nk) indicates, that
{(n,m),...,(n,nk)} € E
A node n in the SED stands for a set of terms T(V/,t)

TV,)=V
T(V,c)=VU{c}
T(V,@(nl,...,nk)) = VU{@(el,...,ek) | e € T(V, n;)}

Strong Equivalence DAGs (SED)

L <Z 1> <y, J_>
T F <u 1> <x, J_>

,,,,,,,,,,,,,,,,,,,,,, | B
<z, F> x:i=1;y:=1; X=2;Y =2 | jeemceeomceeees
Q z:=F(1,1); z:=F(2,2) <2, F>
<u,l> <xy,1> L, L, >
””””” G 1 <u,l> <x,y,2>
<u,fF> : | T T
AN B L G
<z, F> <z, S>
<x,y,@> [Asserttu = Flzx)i | | <xy. 1>
G, = Assignment(Gg, u := F(F(x,y),X)) Gj; = Join(G4,G,,5)

From: Gulwani & Necula. A Polynomial-Time Algorithm for Global Value Numbering. SAS 2004

13

The Alpern, Wegman, Zadeck (AWZ) Algorithm

Incomplete

m Flow-insensitive

- does not compute the equivalences for every program point but sound
equivalences for the whole program

m Uses SSA
- Control-flow joins are represented by ¢s
- Treat ¢s like every other operator (cause for incompleteness)
- Source of imprecision

Interpret the SSA data dependence graph as a finite automaton and
minimize it

- Refine partitions of “equivalent states”

- Using Hopcroft's algorithm, this can be done in O(e - log €)

14

The AWZ Algorithm

B In contrast to finite automata, do not create two partitions but a
class for every operator symbol

- Note that the ¢'s block is part of the operator
- Two ¢s from different blocks have to be in different classes

m Optimistically place all nodes with the same operator symbol in the
same class

- Finds the least fixpoint
- You can also start with singleton classes and merge but this will
(in general) not give the least fixpoint

B Successively split class when two nodes in the class are detected
not equivalent

15

The AWZ Algorithm

Example

x+1
y+1

o o

16

The AWZ Algorithm

Example

X ‘= X1
Y2i=n

+1 X1 ::¢2
+1 || y1:=¢2

17

The AWZ Algorithm

Example

'@ Xl '@ "

The AWZ Algorithm

Example

19

Kildall compared to AWZ

dag =2

Xg:=ag+1

Yo =a+1

312:3
x1:=a+1

a> := ¢4(ao, a1)
X2 = ¢a(x0, X1)

20

Kildall compared to AWZ

Kildall compared to AWZ

