Syntactic Analysis

Reinhard Wilhelm, Sebastian Hack, Mooly Sagiv Saarland University, Tel Aviv University

27. Oktober 2015

Saarland University, Computer Science

Syntactic Analysis: Topics

- Introduction
 - The task of syntax analysis
 - Automatic generation
 - Error handling
- Context free grammars, derivations, and parse trees
- Grammar Flow Analysis
- Pushdown automata
- Top-down syntax analysis
- Bottom-up syntax analysis

Syntax Analysis (Parsing)

Functionality

Input Sequence of symbols (tokens) Output Parse tree

- Report syntax errors, e,g., unbalanced parentheses
- Create "'pretty-printed" version of the program (sometimes)
- In some cases the tree need not be generated (one-pass compilers)

Handling Syntax Errors

- Report and locate the error (symptom)
- Diagnose the error
- Correct the error
- Recover from the error in order to discover more errors (without reporting errors caused by others)

Example

$$a := a * (b + c * d;$$

- Line number (may be far from the actual error)
- The current symbol
- The symbols expected in the current parser state
- Parser configuration

Example Context Free Grammar (Section)

Stat	\rightarrow	If_Stat
		While_Stat
		Repeat_Stat
		Proc_Call
		Assignment
If_Stat	\rightarrow	if Cond then Stat_Seq else Stat_Seq fi
		if Cond then Stat_Seq fi
While_Stat	\rightarrow	while Cond do Stat_Seq od
Repeat_Stat	\rightarrow	<pre>repeat Stat_Seq until Cond</pre>
Proc_Call	\rightarrow	Name (Expr_Seq)
Assignment	\rightarrow	Name := Expr
Stat_Seq	\rightarrow	Stat
		Stat_Seq; Stat
Expr_Seq	\rightarrow	Expr
		Expr_Seq, Expr

Context-Free-Grammar Definition

A context-free-grammar is a quadruple $G = (V_N, V_T, P, S)$ where:

- V_N finite set of nonterminals
- V_T finite set of terminals
- $P \subseteq V_N \times (V_N \cup V_T)^*$ finite set of production rules
- $S \in V_n$ the start nonterminal

Examples

$$G_0 = (\{E, T, F\}, \{+, *, (,), \mathsf{id}\}, P_0, E)$$
$$P_0 = \left\{ \begin{array}{cc} E & \rightarrow E + T \mid T \\ T & \rightarrow T * F \mid F \\ F & \rightarrow (E) \mid \mathsf{id} \end{array} \right\}$$

$$G_1 = (\{E\}, \{+, *, (,), \mathsf{id}\}, P_1, E)$$

$$P_1 = \{E \to E + E \mid E * E \mid (E) \mid \mathsf{id}\}$$

Derivations

A context-free-grammar $G = (V_N, V_T, P, S)$

• $\varphi \implies \psi$ if there exist $\varphi_1, \varphi_2 \in (V_N \cup V_T)^*, A \in V_N$ - $\varphi \equiv \varphi_1 A \varphi_2$ - $A \rightarrow \alpha \in P$ - $\psi \equiv \varphi_1 \alpha \varphi_2$

 $\blacksquare \ \varphi \ \stackrel{*}{\Longrightarrow} \ \psi \ {\rm reflexive \ transitive \ closure}$

■ The language defined by *G*

$$L(G) = \{ w \in V_T^* \mid S \stackrel{*}{\Longrightarrow} w \}$$

Reduced and Extended Context Free Grammars

A nonterminal A is

reachable: There exist φ_1, φ_2 such that $S \stackrel{*}{\Longrightarrow} \varphi_1 A \varphi_2$

productive: There exists $w \in V_T^*$, $A \Longrightarrow w$

Removal of unreachable and non-productive nonterminals and the productions they occur in doesn't change the defined language. A grammar is reduced if it has neither unreachable nor non-productive nonterminals.

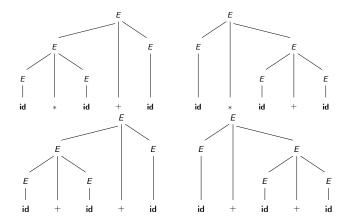
A grammar is extended if a new startsymbol S' and a new production $S' \rightarrow S$ are added to the grammar.

From now on, we only consider reduced and extended grammars.

Syntax-Tree (Parse-Tree)

- An ordered tree.
- Root is labeled with S.
- Internal nodes are labeled by nonterminals.
- Leaves are labeled by terminals or by ε.
- For internal nodes *n*: Is *n* labeled by *N* and are its children $n.1, \ldots, n.n_p$ labeled by N_1, \ldots, N_{n_p} , then $N \to N_1, \ldots, N_{n_p} \in P$.

Examples



Leftmost (Rightmost) Derivations

Given a context-free grammar $G = (V_N, V_T, P, S)$

• $\varphi \implies \psi$ if there exist $\varphi_1 \in V_T^*$, $\varphi_2 \in (V_N \cup V_T)^*$, and $A \in V_N$ - $\varphi \equiv \varphi_1 A \varphi_2$ - $A \rightarrow \alpha \in P$ - $\psi \equiv \varphi_1 \alpha \varphi_2$ replace leftmost nonterminal

• $\varphi \implies_{rm} \psi$ if there exist $\varphi_2 \in V_T^*$, $\varphi_1 \in (V_N \cup V_T)^*$, and $A \in V_N$ - $\varphi \equiv \varphi_1 A \varphi_2$

$$\begin{array}{l} - \ A \rightarrow \alpha \in P \\ - \ \psi \equiv \varphi_1 \ \alpha \ \varphi_2 \end{array} \qquad \qquad \text{replace rightmost nontermina} \end{array}$$

 $\bullet \ \varphi \ \stackrel{*}{\underset{lm}{\longrightarrow}} \ \psi, \ \varphi \ \stackrel{*}{\underset{rm}{\longrightarrow}} \ \psi \ \text{are defined as usual}$

Ambiguous Grammar

A grammar that has (equivalently)

- two leftmost derivations for the same string,
- two rightmost derivations for the same string,
- two syntax trees for the same string.