
computer science

saarland
university Prof. Dr. Sebastian Hack

Johannes Doerfert, B.Sc.

Compiler Construction WS15/16

Exercise Sheet 5

Exercise 5.1. Constant Propagation Analysis
Consider the following program S.

x ← 1 ;
whi le y > 0 do

x ← 2−x ;
y ← y−1;

done

• Provide the control flow graph for program S.

• Constant Propagation Analysis maps a variable to a constant abstract value if and only if it the variable at
that program point is known to always evaluate to that constant value. Define a complete lattice (e.g., use a
Hasse diagram) suitable for Constant Propagation Analysis as well as the abstract transformer(s) for binary
expressions.

• Perform the Constant Propagation Analysis on program S. In particular, provide the corresponding equation
system for program S and perform a fixed-point iteration.

• Could the initial state be choosen differently? How will the results of your analysis change if so? Which
advantages and disadvantages do you gain?

Project task D. Pretty Printing
Up to now your compiler can already lex and parse input. In this project phase you are to add a pretty printer to
your compiler, i.e., functionality to generate nicely formatted source code from the parse tree. Therefore, you have
to construct an abstract syntax tree (AST). Each AST node should be able to dump itself.

For a syntactically correct input program, c4 --print-ast [file] must print the output to stdout. This
new switch must augment the c4 --parse functionality, i.e., its acceptance and rejection behavior as well
as the respective return codes. Download the example file from http://www.cdl.uni-saarland.de/
teaching/cc/2015/exercises/ex05_pretty.c. Invoking c4 --print-ast ex05_pretty.c
should emit a char-exact copy of the source file. You can use the tool diff to compare your output to the reference
file. Once again: Your output must exactly match the reference output.

You can use the pretty printer to debug your compiler. For example, the expression a * b + d + e should be
dumped as (((a * b) + d) + e). If you see a different output, your compiler handles associativity/operator
precedence incorrectly.

In general, follow the reference file for placing newlines, spacing and so forth. The example mostly follows
K&R style. Additionally, consider the following guidelines for your pretty printer:
• Print everything in the original order of the source file.
• Use a tab character (’\t’) for one level of indentation; do not use spaces.
• Do not wrap long lines.
• Do not print digraphs. Print the regular punctuator instead.
• Each (sub-)expression and each (sub-)declarator/abstract-declarator must be fully parenthesized, except for

atoms consisting of at most one token like 0, ’c’, "abc", identifiers and so forth. In particular, original
parentheses are discarded. Do not re-associate any subexpressions.

• Do not hesitate to ask questions in the Forum.

1


