SSA Construction

Daniel Grund \& Sebastian Hack

Saarland University

CC Winter Term 09/10

Outline

Overview

Intermediate Representations

Why?
How?
IR Concepts

Static Single Assignment Form

Introduction
Theory
SSA Construction

Frontend

- Checks correctness of source code wrt. a given language definition
- Transforms (valid) source into the intermediate representation

Intermediate Representation (IR)

- Compiler internal data structures representing a program
- Uniform abstraction from source languages and target architectures
$\Rightarrow n+m$ compiler components instead of $n \cdot m$ compilers
- Optimizations are performed on the IR

Backend

- Encapsulates all details of a target architecture
- Code generation
- Instruction selection
- Instruction scheduling
- Register allocation

Outline

Overview

Intermediate Representations
Why?
How?
IR Concepts

Static Single Assignment Form
Introduction
Theory
SSA Construction

Outline

Overview

Intermediate Representations
Why?
How?
IR Concepts

Static Single Assignment Form

Introduction

Theory
SSA Construction

Motivating IRs

- Bridge the gap between abstract syntax tree and object code
- Provide data structures more suitable for analyses/optimizations
- Easier retargetability (reuse of IR for source-target pairs)
- Reuse of machine independent optimizations

Outline

Overview

Intermediate Representations
Why?
How?
IR Concepts

Static Single Assignment Form

Introduction

Theory
SSA Construction

Design Issues

- Consider source language and target
- Consider (type) of planned optimizations
- Choose the right "level"
- Higher level means closer to source
- Lower level closer to target loses some structure/information
- Procedure cloning, inlining, and loop optimizations need structural high-level information
- Branch optimization, software pipelining, and register allocation need representation close to machine
\Rightarrow Possibly multiple levels in one IR (same generic data structures). So called "lowering" transforms them from high to low.

Lowering

Typical constructs subject to lowering

- array accesses
- struct accesses
- calls (calling convention, ABI)
- instruction selection can be seen as lowering

$$
\begin{aligned}
\mathrm{t} 1 & :=j+2 \\
\mathrm{t} 2 & :=10 * i \\
\mathrm{t} 3 & :=\mathrm{t} 1+\mathrm{t} 2 \\
\mathrm{t} 4 & :=4 * \text { t3 } \\
\mathrm{t} 5 & :=\operatorname{addr}(\mathrm{a}) \\
\mathrm{t} 6 & :=\mathrm{t} 4+\mathrm{t} 5 \\
\mathrm{t} 7 & :=\star \mathrm{t} 6
\end{aligned}
$$

Outline

Overview

Intermediate Representations
Why?
How?
IR Concepts

Static Single Assignment Form
Introduction
Theory
SSA Construction

Different IR Concepts

Representation of control flow

- Control-flow graph (CFG)
- Basic Block Graph (BBG)

Representation of computation

- Triple code
- Expression trees
- Data dependence graphs

Control Flow Graph (CFG)

Definition

In a CFG there is 1:1 correspondence of nodes to statements/instructions. Edges represent possible control flow.

Basic Block Graph (BBG)

Definition

A basic block (BB) is a maximal sequence of statements/instructions such that if any is executed all are executed.

Definition

In a BBG nodes are BBs and control flow is represented only between basic blocks.
Inside a BB there are no control dependencies.
Remark: Most people call this CFG.

Triple Code and Expression Trees

Representation of computation/data flow.
What is inside the BBs?

- Triple code: List of elementary instructions
($\mathrm{x}=\mathrm{op} \mathrm{ab}$)
- Expression trees: List of trees
($x=a+b$ * $c ; y=$ call foo ($3^{*} x$);)

Data Dependence Graphs

- Nodes represent computation results (operators)
- Edges represent data dependencies (data flow)
- Problem with concept of variables (state)
- No problem with side-effect-free operators (functional programming)
- Suitable representation for SSA form

Outline

Overview

Intermediate Representations

Why?
How?
IR Concepts

Static Single Assignment Form
Introduction
Theory
SSA Construction

Outline

Overview

Intermediate Representations

Why?
How?
IR Concepts

Static Single Assignment Form
Introduction
Theory
SSA Construction

Motivation

Main goal:

- Make data-flow analyses more efficient
- Make optimizations more effective

Nice "side-effects":

- Some analyses/optimizations happen implicitly for free
- SSA-construction can implicitly perform CSE
- Use-Def chains are explicit in representation
- Def-Use chains are cheaper to represent

Definition

Static Single Assignment is a property of an IR regarding variables.

Definition

A program is in SSA form if every variable is statically assigned at most once.
l.e. there are no two program locations assigning the same variable.

Intuition Behind Construction

- Replace concept of variable by concept of abstract values
- The entity statically referred to is a value
- For each assignment to a variable v a new abstract value v_{i} is defined v is replaced by v_{1}, v_{2}, \ldots
- For each use of v the definition v_{i} valid at that location is used instead

Merge Problem and Phi-Functions

- Problem: What to do when control flow merges?
- Here: Which c to use at the return?

Merge Problem and Phi-Functions

- Problem: What to do when control flow merges?
- Here: Which c to use at the return?
- Solution: Introduce pseudo operation, ϕ-functions
- ϕ s select the correct value dependent on control flow

Outline

Overview

Intermediate Representations

Why?
How?
IR Concepts

Static Single Assignment Form

Introduction

Theory
SSA Construction

Phi-Functions

- ϕ s have as many operands as the corresponding BB has predecessors
- Each operand is uniquely associated with one of these predecessors
- The result of a ϕ is the operand associated to the predecessor through which the BB was reached
- ϕ s always are the first "instructions" in a BB
- all ϕ s in a BB must be evaluated simultaneously

Why Simultaneously? Swap Example

Why Simultaneously? Swap Example

Why Simultaneously? Swap Example

Dominance

Given a CFG with basic blocks X, Y, Z, and S, where S is the start block.

- Dominance: $X \geq Y$

Each path from S to Y goes through X

- Strict dominance: $X>Y$

$$
X>Y \text { if } X \geq Y \wedge X \neq Y
$$

- Dominance is a tree order
- Immediate dominator: idom (X) $X=\operatorname{idom}(Y)$ if $X>Y \wedge \nexists Z: X>Z>Y$

SSA Program

A CFG is in SSA form iff

- every variable has exactly one program point where it is defined
- for every use of a variable x

$$
\ell: \cdots \leftarrow \tau(\ldots, x, \ldots)
$$

the definition of x either

- dominates ℓ if $\tau \neq \phi$
- dominates the i-th predecessor of ℓ if $\tau=\phi$ and x is the i-th argument

(Iterated) Join Points

- Consider two paths $p: p_{1}, \ldots, p_{n}, q: q_{1}, \ldots q_{m}$ of nodes in the CFG
- Say p and q converge at z if

$$
\exists k \leq n, I \leq m \cdot\left(p_{k}=q_{l}=z\right) \wedge\left(\forall 1 \leq i<k, 1 \leq j<I . p_{i} \neq q_{j}\right)
$$

- Let $\mathscr{J}(x, y)$ be the set of convergence/join points of x and y :

$$
\mathscr{J}(x, y):=\left\{z \mid \exists p \cdot x \rightarrow^{+} z, q: y \rightarrow^{+} z \cdot p, q \text { converge at } z\right\}
$$

- $\mathscr{J}(x, y)$ can be extended to sets of nodes:

$$
\mathscr{J}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right):=\bigcup_{1 \leq i<j \leq n} \mathscr{J}\left(x_{i}, x_{j}\right)
$$

- When putting a program to SSA form, ϕ-functions have to be inserted for a variable v at all $\mathscr{J}(\operatorname{defs}(v))$
- But ϕ-functions constitute new definitions of SSA variables related to v
- Hence \mathscr{J} needs to be iterated:

$$
\begin{aligned}
\mathscr{J}^{1}(X) & :=\mathscr{J}(X) \\
\mathscr{J}^{i+1}(X) & :=\mathscr{J}\left(\mathscr{J}^{i}(X) \cup X\right) \\
\mathscr{J}^{+} & :=\mathscr{J}^{n} \text { for } n>1 \text { and } \mathscr{J}^{n}=\mathscr{J}^{n+1}
\end{aligned}
$$

Placement of Phi-Functions

Theorem (ϕ placement)
Given a non-SSA CFG and a variable x. Let defs (x) be the set of program points where x is defined. A correct SSA construction algorithm has to place a ϕ for x at all program points in

$$
\mathscr{J}^{+}(\operatorname{defs}(x)) \cap \operatorname{live}(x)
$$

Proof sketch:

- Let X and Y contain definitions of v and Z be a join point of two paths $X \rightarrow^{+} Z$ and $Y \rightarrow^{+} Z$
- ϕ can not be placed before Z
- ϕ must not be placed after Z, e.g. in Z^{\prime} with $Z \rightarrow^{+} Z^{\prime}$ Disambiguation of paths in a Z^{\prime} would be impossible
- Iterated join points are necessary, since inserted ϕ s are new definitions of the variable

Outline

Overview

Intermediate Representations

Why?
How?
IR Concepts

Static Single Assignment Form

Introduction
Theory
SSA Construction

SSA Construction

- In the worst case each BB has a ϕ for each variable.
- complexity $O\left(n^{2}\right)$
- linear in practice
- Join criterion only says where to place ϕ s. What are the correct arguments?
- Idea by Click 1995:
- don't compute join sets explicitly
- perform global value numbering during construction
- place ϕ s on the fly

Value Numbering

- Find congruent variables
- Reuse instead of recomputation
- Two computations are congruent if
- identical operators w/o side-effects (includes constants)
- congruent operands
- Normalize expressions. More congruence detectable.
- $\operatorname{In} c=a+1$ and $d=1+b$
c and d are congruent if a and b are congruent

SSA Construction with VN (1)

Starting point:

- AST or BBG
- w.l.o.g. computations are in form $x=\tau(y, z)$

Proceeding:

- in each BB store valid value number $\mathrm{VN}(\tau, y, z)$ for each variable
- store value number: $\operatorname{setVN}(x, v n)$
- get value number: getVN (x)
- getVN(x) possibly inserts ϕ s if VN not defined in current BB

Nice:

- ϕs are only inserted if variable is live

SSA Construction with VN (2)

For each $x=\tau(y, z)$ do:

- $\operatorname{getVN}(y), \operatorname{getVN}(z)$
- compute $\mathrm{VN}(\tau, y, z)$
- if value number is new insert $\mathrm{VN}(\tau, y, z)=\widehat{\tau}(\operatorname{getVN}(y), \operatorname{getVN}(z))$
into the basic block
- store value number of $x: \operatorname{setVN}(x, \operatorname{VN}(\tau, y, z))$

Nice:

- computation of VN implicitly performs CSE

SSA Construction with VN (3)

Details of getVN(v):

- if value v_{i} is valid for variable v in current BB return v_{i}
- else if BB has exactly one predecessor call getVN(v) there
- else (more predecessors):
- call getVN(v) for all predecessors
- let the values v_{1}, v_{2}, \ldots be the results
- insert $\mathrm{VN}(\phi, v, v)=\phi\left(v_{1}, v_{2}, \ldots\right)$ into BB
- avoid unnecessary ϕs
- store new value of $v: \operatorname{setVN}(v, \operatorname{VN}(\phi, v, v))$
- return this new value

Unknown Predecessors: Problem

Observation: getVN might be undefined for some predecessors (loops!) Solution: Two-stage approach

- mark a BB as ready when it is in SSA form
- if all predecessors are ready proceed as described
- else insert ϕ^{\prime} and remember operand for finishing later
- when marking a BB as ready check successors and possibly finish them

Unknown Predecessors: Example

Unknown Predecessors: Consequences

Consequence: Do construction in control-flow order (as much as possible)

- Use post-order of a reverse depth-first search
- keeps number of ϕ^{\prime} s low
- dominating BBs are constructed before dominated BBs
- this makes the implicit CSE more effective

Larger Example

(1) $a:=1$;
(2) $\mathrm{b}:=2$;
while (true) \{
(3) $c:=a+b$;
(4) if $(d:=c-a)$
(5) while ($\mathrm{d}:=\mathrm{b} * \mathrm{~d}$) \{
(6) $\quad d:=a+b$;
(7) $\quad e:=e+1$; \}
(8) $\mathrm{b}:=\mathrm{a}+\mathrm{b}$;
(9) if $(e:=c-a)$ break;
$\}$
(10) $\quad \mathrm{a}:=\mathrm{b} * \mathrm{~d} ;$
(11) $\mathrm{b}:=\mathrm{a}-\mathrm{d} ;$

SSA Construction Block 1

SSA Construction Block 2

Get value number for a first places ϕ^{\prime} for a ...

SSA Construction Block 2

... then for $b \ldots$

SSA Construction Block 2

...and eventually a VN for c.

SSA Construction Block 2

Inserting $d:=c-$ a works like normal value numbering.

SSA Construction Block 3

SSA Construction Block 3

SSA Construction Block 3

SSA Construction Block 4

Call to $\operatorname{getVN}(a)$ in 4 lead to recursive call getVN(a) in 3.
This in turn produces a ϕ^{\prime} for a in 3.

SSA Construction Block 4

SSA Construction Block 4

All predecessors of 3 are now in SSA form: ϕs are placed. In block 2 a ϕ^{\prime} is recursively placed for e.

SSA Construction Block 5

$\operatorname{getVN}(a)$ in 5 recognizes copies, finds unique definition: no ϕ is necessary

SSA Construction Block 5

SSA Construction Block 5

SSA Construction Block 5

All predecesors of 2 are now in SSA form: ϕ s are placed.

Algorithm recognices:
e is uninitialized! Insert undefined value e_{1}

SSA Construction Block 6

Recursive call to getVN(d) in 5 places complete ϕ function d_{5}

SSA Construction Block 6

Optimization: Copy Propagation

Optimization: Constant Propagation

Optimization: Dead Code Elimination

Further Optimizations

- common subexpressions
- reassociation
- evaluation of constant expressions
- copy propagation
- dead code elimination

1. S. Muchnick: Advanced Compiler Design and Implementation (On IR issues and SSA)
2. C. Click et al.: His papers from 1995. Confer to DBLP (On practical SSA construction and an SSA-IR proposal)
3. R. Cytron et al.: An efficient method of computing SSA form (Original work on SSA. POPL 1989, similar article in TOPLAS 1991)
4. www.libfirm.org (optimizing graph-based SSA IR)
