Software Pipelining

Reinhard Wilhelm Universität des Saarlandes wilhelm@cs.uni-sb.de – Wilhelm/Maurer: Compiler Design, Chapter 12 –

5. Februar 2008

ヘロト ヘ週ト ヘミト ヘラト

∍

Scheduling Cyclic Code

So far only scheduling of acyclic code:

List scheduling of basic blocks

Trace and superblock scheduling of sequences of basic blocks What about loops? First approach:

1. Unroll loop a number of times, obtaining an enlarged basic block as new body,

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

2. list schedule this basic block.

Loop Unrolling

```
for (i=0; i < N; i++) {
   S(i)
}</pre>
```

```
rewritten into
```

```
for (i=0; i+4 < N; i+=4) {
   S(i);
   S(i+1);
   S(i+2);
   S(i+3)
}
for (; i < N; i++) {
   S(i);
}</pre>
```

Disadvantages: code growth and no overlapping across back edge = oge

Software Pipelining

generates a schedule that

- overlaps execution of consecutive iterations,
- initiates a new iteration in a fixed initiation interval, II,
- respects dependences
 - within the same iteration and
 - between several iterations loop-carried dependences,

Sac

avoids resource conflicts.

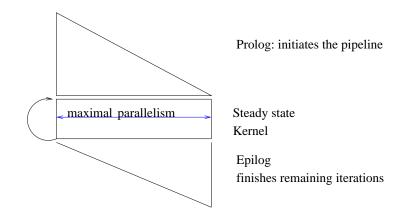
Advantages:

- higher throughput,
- minimal code-size expansion.

Analogy to Hardware Pipelines

Instruction Pipeline: synchronous overlapped execution of consecutive instructions, issue of new instruction in every cycle if no hazards Software Pipeline: synchronous overlapping execution of several consecutive iterations, one iteration issued every *II* cycles.

A Software Pipeline - the Result of our Endeavour



≣ ▶

990

Terminology and Generic Names

Operation: Machine Operation, e.g. Load, Store, Add names: a, b, c, ...

- Instruction: Set of operations scheduled at the same position, names: A, B, C, ...
 - Latency: Execution time of an operation
 - Delay: Required distance between the termination of a and the issue of b if $(a \rightarrow b)$

Delays as Functions of Dependence Type

Delay for $(a \rightarrow^{dt} b)$ depends on the latencies of a and b and dt. Assumptions:

- write-cycle is the last,
- read-cycles are any cycle but the last,
- in concurrent reads and writes, read reads old content.

Schedules

Schedule: Mapping from operations to positions (cycles), names: σ , σ_{flat} , σ_{swp} ,... Note: We are overloading σ with two different meanings:

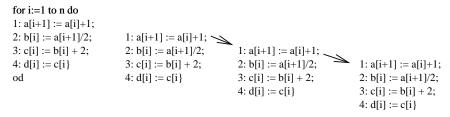
static: the schedule as produced by the compiler, dynamic: the dynamic "unrolling" of this schedule.

SW pipelines: loops scheduled as SW pipelines are graphically represented as a matrix:

JOG CP

- columns for original iterations,
- rows for positions in the SW pipeline.

A Simple Loop and Potentially Parallel Execution



Arrows represent dependences between instances of statements in different iterations of the loop.

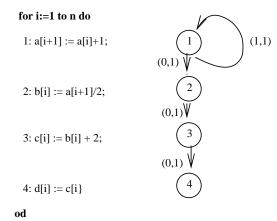
Jac.

Inter-iteration Dependencies (Loop Carried Dependencies)

Edges of the DDG are labelled with (depDist, delay)

- dependence distance: number of iterations between two dependent accesses (0 for intra-iteration dependencies),
 - delay: minimal number of cycles between the issue of two dependent operations.

SQC.

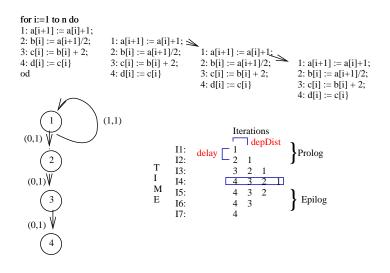


 $\mathfrak{I}_{\mathcal{A}}$

O > <
 O > <
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

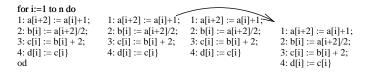
≣ ▶

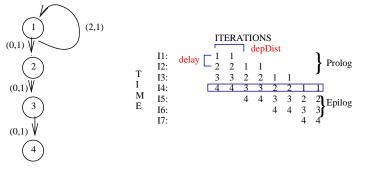
Software Pipelining L_{Dependences}



< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Another Loop





(ロ) (四) (三) (三) (三) (0)

Examples of Dependences

Instructions *a* and *b* occur consecutively in the loop body.

i is the loop control variable.

instr. a	instr. <i>b</i>	DDG arc	Dep. type	depDist
m[i+2] := x;	y := m[i];	$a \longrightarrow b$		
y := m[i+3];	m[i] := x;	$a \longrightarrow b$		
m[i] := x;	y := m[i-2];	$a \longrightarrow b$		
y := m[i];	m[i-3] := x;	$a \longrightarrow b$		
y := t;	t := x + i;	$a \longrightarrow b$		
		$b \longrightarrow a$		
t = x + i;	y := t;	$a \longrightarrow b$		
		$b \longrightarrow a$		
y := x + i;	y := t;	$a \longrightarrow b$		
-	-	$b \longrightarrow a$		

(日) (四) (三) (三)

Examples of Dependences

Instructions *a* and *b* occur consecutively in the loop body.

i is the loop control variable.

instr <i>a</i>	instr. <i>b</i>	DDG arc	Dep type	depDist
m[i+2] := x;	y := m[i];	$a \longrightarrow b$	du	2
y := m[i+3];	m[i] := x;	$a \longrightarrow b$	ud	3
m[i] := x;	y := m[i-2];	$a \longrightarrow b$	du	2
y := m[i];	m[i-3] := x;	$a \longrightarrow b$	ud	3
y := t;	t := x + i;	$a \longrightarrow b$	ud	0
		$b \longrightarrow a$	du	1
t = x + i;	y := t;	$a \longrightarrow b$	du	0
		$b \longrightarrow a$	ud	1
y := x + i;	y := t;	$a \longrightarrow b$	dd	0
		$b \longrightarrow a$	dd	1

(ロ) (四) (三) (三) (三) (0)

The General Software-Pipeline Scheduling Problem

Given:

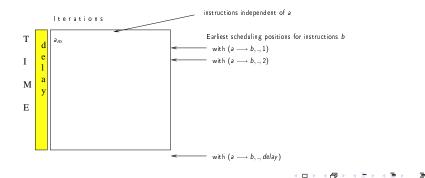
- a loop with body \mathcal{L} and l iterations,
- ► a *p*-times parallel architecture.

Wanted: Efficient parallel schedule for \mathcal{L}^{I} respecting the dependence and resource constraints, conceptually, \mathcal{L}^{I} (\mathcal{L} unrolled I times) transformed into $\alpha \mathcal{K}^{k} \omega$ \mathcal{K} , the Kernel, body of a new loop, α the Prelude, ω the Postlude. A new iteration of the new loop is initiated after a fixed number of cycles, called the Initiation Interval, II.

Scheduling Constraints due to Dependences

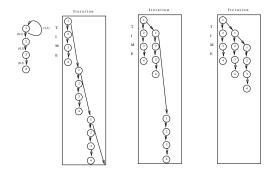
For *a*, operation in \mathcal{L} , let a_n be the instance of *a* in the *n*-th iteration Constraint for any schedule σ due to $(a \rightarrow b, depDist, delay)$:

$$\sigma(b_{\textit{m+depDist}}) \geq \sigma(a_{\textit{m}}) + \textit{delay}$$



nac

Scheduling due to Dependence Constraints 2

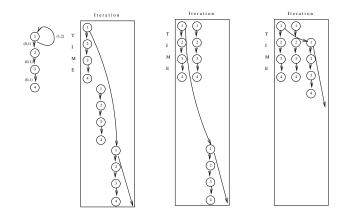


- dependence graph is unrolled, loop-carried dependences instantiated,
- operations are moved up while arrows still go downwards (respecting delays).

< 🗆 🕨

Da Cr

The Influence of the Dependence Distance

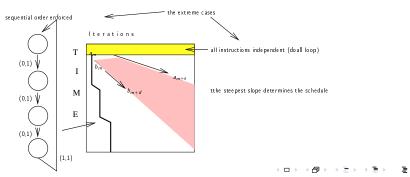


< D >

990

Implications of the Scheduling Constraints

- ▶ bigger value of *delay* → later placement of *b* in the schedule,
- ▶ bigger value of depDist → later instance of b concerned → more freedom to schedule,
- best achievable speedup depends on the slope = delay/depDist.



 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Recurrence

Recurrence is the direct or indirect inter-iteration dependence of an operation on itself (a cycle).

Operation without recurrence: all instances can be executed in parallel to each other.

Let $\Theta = \{d_1, \ldots, d_n\}$ be an elementary cycle of the dependence graph on an operation *a*.

$$delay_{\Theta} = \sum_{i=1}^{n} delay(d_i)$$
$$depDist_{\Theta} = \sum_{i=1}^{n} depDist(d_i)$$

Strongly-Connected Components in the Dependency Graph

The algorithm will consider strongly-connected components of the dependency graph.

Consequences of cyclic dependence:

- ► any predecessor is also a successor,
- topological sorting has to be modified to schedule operations without all predecessors being already scheduled,
- scheduling an operation defines a deadline for all its successors

Sar

Scheduling Constraints due to Resources

Each instance of an operation has other instances from successive iterations executed II, $2 \times II$, $3 \times II$, ... cycles later.

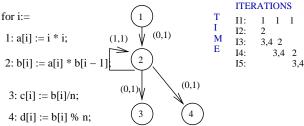
 \implies Conflicts on a resource in a single iteration must be avoided at times that are multiples of *II* apart.

Sar

 \implies Total schedule is conflict-free if within a single iteration no resource is used more than once at the same time modulo *II*.

Identifying a Kernel

Problem: Detect a repeating pattern in a newly made schedule to make it the kernel.



Greedy scheduling, i.e. scheduling operation 1 as early as possible, does not form a kernel.

nac

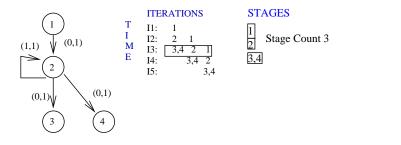
Stages

Schedule for a single iteration of the original loop, \mathcal{L} , divided into a sequence of stages of length *II*. Number of stages is the stage count, *SC*.

< D >

F >

Jac.



Constraints

1. dependencies and resource constraints

2. all operations from ${\cal L}$ occur once in ${\cal K},$

(日) (四) (三) (三)

Sac

3. width of $\mathcal{K} \leq p$

Goal: $|\mathcal{K}|$ minimal

Properties of the Kernel

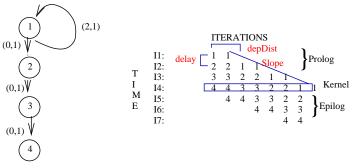
- \blacktriangleright ${\cal K}$ contains operations of SC consecutive iterations of ${\cal L}$
- ► Initiation Interval, II = |K|, the distance between two consecutive iterations of the new loop,
- II = |K| is bounded from below by the slope, delay/depDist, where the arc controlling the *II* is annotated with (depDist, delay).

JOC P

Observation:

- ▶ Prelude starts *SC* − 1 iterations,
- ▶ Postlude finishes *SC* − 1 iterations,
- \blacktriangleright all instructions of the original loop occur once in \mathcal{K} .

Example (revisited)



Slope is delay/depDist = 1/2 of loop-carried dependence.

< D >

F >

990

Approaches

move-then-schedule:

move code forwards/backwards over loop backedge to improve schedule;

Problem: which operations to move and in which multiplicity?

schedule-then-move:

find a schedule; transform code accordingly

 unroll-while-scheduling: Kernel Recognition complex bookkeeping of scheduling state required

or

▶ generate and solve set of modulo constraints: Modulo Scheduling

Modulo Scheduling

Treats

- innermost loops
- one iteration of original loop (to start with; later tried with several copies if available parallelism allows)

SOC

Basic steps

- 1. compute lower bound for *II*
- 2. find schedule
- 3. generate kernel code
- 4. generate prelude and postlude code

These

Lower Bound IImin

 II_{min} to be determined before scheduling; starting value for iteration. Depends on the Resource Consumption of the operations and on Dependences between the operations

$$\begin{split} & II_{min} \geq \max \left\{ II_{res}, II_{dep} \right\} \\ & \text{where } II_{res} = \min \{ |\sigma| \ |\sigma \ \text{ conflict-free schedule} \} \\ & \text{and } II_{dep} = \max_{\text{cycles } \Theta} \left\{ \left\lceil \frac{delay_{\Theta}}{depDist_{\Theta}} \right\rceil \right\} \\ & \text{terms will be explained in the following slides.} \end{split}$$

Determining *II*_{res}

Reservation Table for each operation O, RT_O : cycles × resources $\rightarrow \{0, 1\}$ defines the resource consumption at each cycle relative to issue time 0. Resources are

- Source and Result Buses,
- Stages of functional units.

Later, during scheduling used: Schedule Reservation Table, (Modulo Reservation Table, MRT),

records which resource is used by which operation at a given time of a schedule under construction.

When an operation is attempted to be scheduled at time t its reservation table is translated by t and donto the SRT to check for resource conflicts.

If no conflict, *RT_O* is **or**'ed onto the current Schedule Reservation Table.

Complexities

Complexity of determining *II_{res}* depends on the type of resource consumption Simple Reservation Tables: single resource in a single cycle at issue cycle Block Reservation Table: single resource for multiple, consecutive cycles starting at issue cycle Complex Reservation Table: all others Alternative Reservation Tables: for operations executable on different functional units

Sac

Determining the minimal II_{res} is equivalent to binpacking.

A Heuristics

Ignore dependences.

- 1. Sort operations of loop body in increasing order of number of alternatives
- Take next operation a from the list; for each resource r: add the number of times a uses r to usageCount(r), choose alternative with lowest (partial) maximal usage count over all resources

Sac

Usage count for most heavily used resource constitutes the approximated $\mathit{II}_{\mathit{res}}$

Determining *II_{dep}*

Let $\Theta = \{d_1, \ldots, d_n\}$ be an elementary cycle of the dependence graph

$$delay_{\Theta} = \sum_{i=1}^{n} delay(d_i)$$
$$depDist_{\Theta} = \sum_{i=1}^{n} depDist(d_i)$$

Property of each schedule σ and each operation a from $\mathcal L$

$$\sigma(a_{m+i}) - \sigma(a_m) = II \times i$$

Determining *II_{dep}* (cont'd)

Resulting Constraint for II_{dep} : $\forall \Theta$. $depDist_{\Theta} \times II_{dep} \ge delay_{\Theta}$ Transformed into:

$$\forall \Theta. \quad II_{dep} \ge \left[\frac{delay_{\Theta}}{depDist_{\Theta}} \right]$$

Choose:

$$II_{dep} = \max_{\Theta} \left\{ \left\lceil \frac{delay_{\Theta}}{depDist_{\Theta}} \right\rceil \right\}$$

Jac.

Computing *II_{dep}*

Alternatives:

- shortest-path algorithm
- minimal cost-to-time ratio cycle problem

Algorithm for the minimal cost-to-time ratio cycle problem Input: IImin

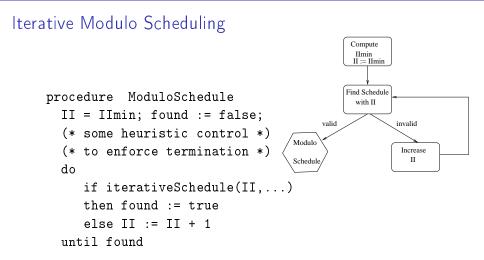
MinDist[i, j] is the smallest legal interval between $\sigma(i)$ and $\sigma(j)$ in the same iteration.

Initialize

$$MinDist[i,j] = \begin{cases} -\infty & \text{if no edge from } i \text{ to } j \\ \max\{max\{d|(a \rightarrow b, 0, d)\}, \\ \max\{delay(a) - depDist(e) \times II \mid depDist(e) > 0\} \} \end{cases}$$

Iterate the minimal cost-to-time ratio cycle algorithm with increasing *II_{min}*:

- MinDist[i, i] > 0: impossible \implies increase II
- MinDist[i, i] < 0 for all i: ⇒ slack around every cycle ⇒ decrease II;
- ► Termination, if at least for one *i* MinDist[i, i] = 0.



Scheduling Priority: Basis is Height-based priority (assumes acyclicity) extended for inter-iteration dependences.

500

Instruction Scheduling vs. Operation Scheduling

Difference: what is the subject of scheduling?

Instruction Scheduling	Operation Scheduling
instruction to be filled	operation to be scheduled
at each point in time:	select an operation:
select max. number of candidate operations that can be scheduled and schedule them	schedule it at a legal and profitable position

Modulo scheduling uses operation scheduling, since operations may have to be scheduled several times.

Difference of Modulo Scheduling to Acyclic List Scheduling

- Operation can be unscheduled by backtracking operation can be scheduled several times modulo scheduling uses operation scheduling.
- Modulo Schedule Reservation Table, MRT[t mod II, r] records use of resource r at time t ⇒ length of MRT = II
- ▶ conflict at time t ⇒ conflict at all times t ± n × II
 ⇒ scheduling only for a candidate interval
 [MinTime, MaxTime] where MaxTime = MinTime + II 1
- List Scheduling always finds a time slot.
 Procedure TimeSlot might not find a legal schedule of the current operation in the interval [MinTime, MaxTime] => backtracking.

function lterativeSchedule(...)

```
function IterativeSchedule(II, ...) boolean:
   var Op, Estart, MinTime, MaxTime, TimeSlot: int;
begin
schedule(START, 0); (* START pseudooperation *)
while list of non-scheduled operations is not empty and ... do
begin
 Op := highestPriorityOperation;
 Estart := CalculateEarliestStart(Op);
 MinTime := Estart;
 MaxTime := MinTime + II -1:
 TimeSlot := TimeSlot(Op, MinTime, MaxTime);
 Schedule(Op, TimeSlot); (* may unschedule conflicting operations *)
end:
IterativeSchedule := (list of non-scheduled operations empty?)
end:
```

function TimeSlot(...)

```
function TimeSlot(Op, MinT, MaxT: int) int;
   var CurrTime, SchedSlot: int:
begin
CurrTime := minT; SchedSlot :=0;
while SchedSlot = 0 and CurrTime < MaxT do
   if ResourceConflict(Op, CurrTime)
   then CurrTime := CurrTime + 1:
   else SchedSlot := CurrTime
  fi;
if SchedSlot = 0
  then if (NeverScheduled(Op) or MinT > PrevSchedTime[Op]
    then SchedSlot := MinT
          SchedSlot := prevSchedTime[0p]+1
    else
    fi:
TimeSlot := SchedSlot
end
```

Height-based Priority and Earliest Start

Priority function: height-based extended to cyclic and inter-iteration dependences.

Uses effective delay.

$$\mathit{EffDelay}(p
ightarrow q) = \mathit{delay}(p
ightarrow q) - \mathit{II} * \mathit{depDist}(p
ightarrow q)$$

$$HeightR(p) = \begin{cases} 0 & \text{if } p \text{ is STOP} \\ \max_{q \in succ(p)}(0, HeightR(q) + delay(p \to q)) & \\ -II * depDist(p \to q)) & otherwise \end{cases}$$

Warning: Recursion difficult to resolve!

$$Estart(p) = \max_{q \in pred(p)} \begin{cases} 0 & \text{if q is non-scheduled} \\ max(0, SchedTime(q) + \\ delay(q \rightarrow p) - II * depDist(q \rightarrow p)) & otherwise \end{cases}$$

Candidate Time Slots

Correctness of schedule

- as for resource usage: guaranteed by MRT
- as for dependences: uses Estart, earliest time slot for operation to be scheduled

Peculiarity in iterative modulo scheduing:

not all predecessors may have been scheduled or may have remained scheduled

Constraints for scheduling the current operation:

- dependences on predecessors: Estart yields earliest slot
- dependences on successors: conflicts solved by unscheduling

Unscheduling

- slot in [MinTime, MaxTime] found without resource conflict: unschedule operation with dependence conflict
- no slot in [MinTime, MaxTime] found without resource conflict: choose time slot + choose operation to unschedule

Increase Exploitable Parallelism

- IF-conversion to eliminate forward branches
- Elimination of pseudo dependences introduced by register allocation

3

Sac

Rotating registers or variable expansion

Predicated Execution

Motivation

 costs of speculation: processor speed is growing issue width is growing static speculation: more code moved past branches – more compensation code inserted dynamic speculation: higher costs of misprediction
 branches limit II P

Predicated Instructions

Predicated instruction add r1,r1,1 (P)

conditionally executed depending on the value in predicate register \ensuremath{P}

Execution

- Normal instruction fetch
- predicate true: normal execution
- predicate false: instruction nullified no effect on the state

Predicate-register setting instruction

 $\texttt{pred}_<\!\textit{comp} > P_{\textit{out},1}(\textit{boolop}_1), P_{\textit{out},2}(\textit{boolop}_2), \textit{s}_1, \textit{s}_2, (P_{\textit{in}})$

- 1. Compares s_1 with s_2 according to < comp >,
- 2. combines the value of P_{in} with the result
 - using boolean operation boolop₁ to compute P_{out,1}
 - using boolean operation boolop₂ to compute P_{out,2}

Available boolean operations: Unconditional (U), conditional, NOT, AND, ANDNOT, ...

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

If-Conversion

Conditionals translated into predicated code

```
outermost conditional:
if-conv( if comp(a,b) then e_1 else e_2, true) =
  pred comp q_1(U), q_2(NOT U), a, b;
  if-conv(e_1, a_1);
  if-conv(e_2, a_2);
    where q_1 and q_2 are unused predicates
nested conditionals:
if-conv( if comp(a,b) then e_1 else e_2, p) =
  pred comp q_1(AND), q_2(ANDNOT), a, b, p;
  if-conv(e_1, q_1);
  if-conv(e_2, a_2);
    where q_1 and q_2 are unused predicates
```

Sar