
Software Pipelining
Software PipeliningReinhard WilhelmUniversität des Saarlandeswilhelm�s.uni-sb.de� Wilhelm/Maurer: Compiler Design, Chapter 12 �5. Februar 2008

Software PipeliningIntrodutionSheduling Cyli CodeSo far only sheduling of ayli ode:
◮ List sheduling of basi bloks
◮ Trae and superblok sheduling of sequenes of basi bloksWhat about loops? First approah:1. Unroll loop a number of times, obtaining an enlarged basiblok as new body,2. list shedule this basi blok.

Software PipeliningIntrodutionLoop Unrollingfor (i=0; i < N; i++) {S(i)}rewritten intofor (i=0; i+4 < N; i+=4) {S(i);S(i+1);S(i+2);S(i+3)}for (; i < N; i++) {S(i);}Disadvantages: ode growth and no overlapping aross bak edge

Software PipeliningIntrodutionSoftware Pipelininggenerates a shedule that
◮ overlaps exeution of onseutive iterations,
◮ initiates a new iteration in a �xed initiation interval, II ,
◮ respets dependenes

◮ within the same iteration and
◮ between several iterations � loop-arried dependenes,

◮ avoids resoure on�its.Advantages:
◮ higher throughput,
◮ minimal ode-size expansion.

Software PipeliningIntrodutionAnalogy to Hardware Pipelines
Instrution Pipeline: synhronous overlapped exeution ofonseutive instrutions,issue of new instrution in every yle if no hazardsSoftware Pipeline: synhronous overlapping exeution of severalonseutive iterations,one iteration issued every II yles.

Software PipeliningIntrodutionA Software Pipeline � the Result of our Endeavour
Steady state

Prolog: initiates the pipeline

maximal parallelism

finishes remaining iterations

Kernel

Epilog

Software PipeliningIntrodutionTerminology and Generi NamesOperation: Mahine Operation, e.g. Load, Store, Addnames: a, b, , . . .Instrution: Set of operations sheduled at the same position,names: A,B ,C , . . .Lateny: Exeution time of an operationDelay: Required distane between the termination of a andthe issue of b if (a → b)

Software PipeliningIntrodutionDelays as Funtions of Dependene TypeDelay for (a →dt b) depends on the latenies of a and b and dt.Assumptions:
◮ write-yle is the last,
◮ read-yles are any yle but the last,
◮ in onurrent reads and writes, read reads old ontent.delay onservativedu: lateny(a) lateny(a) a

bud: −1 + lateny(a) − lateny(b) 0 a

bdd: 1 + lateny(a) − lateny(b) lateny(a) a

b

Software PipeliningIntrodutionShedulesShedule: Mapping from operations to positions (yles),names: σ, σ�at , σswp , . . .Note: We are overloading σ with two di�erent meanings:stati: the shedule as produed by the ompiler,dynami: the dynami �unrolling� of this shedule.SW pipelines: loops sheduled as SW pipelines are graphiallyrepresented as a matrix:
◮ olumns for original iterations,
◮ rows for positions in the SW pipeline.

Software PipeliningIntrodutionA Simple Loop and Potentially Parallel Exeution
4: d[i] := c[i}

1: a[i+1] := a[i]+1;
2: b[i] := a[i+1]/2;
3: c[i] := b[i] + 2;
4: d[i] := c[i}
od

for i:=1 to n do

1: a[i+1] := a[i]+1;
2: b[i] := a[i+1]/2;
3: c[i] := b[i] + 2;
4: d[i] := c[i}

1: a[i+1] := a[i]+1;
2: b[i] := a[i+1]/2;
3: c[i] := b[i] + 2;
4: d[i] := c[i}

1: a[i+1] := a[i]+1;
2: b[i] := a[i+1]/2;
3: c[i] := b[i] + 2;

for i:=1 to n do

Arrows represent dependenes between instanes of statements indi�erent iterations of the loop.

Software PipeliningDependenesInter-iteration Dependenies (Loop Carried Dependenies)
Edges of the DDG are labelled with (depDist, delay)dependene distane: number of iterations between two dependentaesses (0 for intra-iteration dependenies),delay: minimal number of yles between the issue of twodependent operations.

Software PipeliningDependenes

4: d[i] := c[i}

1

2

3

4

(0,1)

(0,1)

(0,1)

(1,1)

for i:=1 to n do

od

1: a[i+1] := a[i]+1;

2: b[i] := a[i+1]/2;

3: c[i] := b[i] + 2;

Software PipeliningDependenes

}

1: a[i+1] := a[i]+1;
2: b[i] := a[i+1]/2;
3: c[i] := b[i] + 2;
4: d[i] := c[i}
od

for i:=1 to n do

1: a[i+1] := a[i]+1;
2: b[i] := a[i+1]/2;
3: c[i] := b[i] + 2;
4: d[i] := c[i}

1: a[i+1] := a[i]+1;
2: b[i] := a[i+1]/2;
3: c[i] := b[i] + 2;
4: d[i] := c[i}

1: a[i+1] := a[i]+1;
2: b[i] := a[i+1]/2;
3: c[i] := b[i] + 2;
4: d[i] := c[i}

1

2

3

4

(0,1)

(0,1)

(0,1)

(1,1)

T
I
M
E

I1:
I2:
I3:
I4:
I5:
I6:
I7:

1
2 1
3 2 1
4 3 2 1
4 3 2
4 3
4

Iterations
depDist

delay Prolog}

Epilog

for i:=1 to n do

Software PipeliningDependenesAnother Loop
Prolog

1: a[i+2] := a[i]+1;
2: b[i] := a[i+2]/2;
3: c[i] := b[i] + 2;
4: d[i] := c[i}

1

2

3

4

(0,1)

(0,1)

(0,1)

(2,1)

T
I
M
E

I1:
I2:
I3:
I4:
I5:
I6:
I7:

1 1
2 2 1 1
3 3 2 2 1 1
4 4 3 3 2 2 1 1
 4 4 3 3 2 2
 4 4 3 3
 4 4

ITERATIONS

delay

for i:=1 to n do
1: a[i+2] := a[i]+1;
2: b[i] := a[i+2]/2;
3: c[i] := b[i] + 2;
4: d[i] := c[i}
od

for i:=1 to n do

depDist

1: a[i+2] := a[i]+1;
2: b[i] := a[i+2]/2;
3: c[i] := b[i] + 2;
4: d[i] := c[i}

1: a[i+2] := a[i]+1;
2: b[i] := a[i+2]/2;
3: c[i] := b[i] + 2;
4: d[i] := c[i}

Epilog}

}

Software PipeliningDependenesExamples of DependenesInstrutions a and b our onseutively in the loop body.i is the loop ontrol variable.instr. a instr. b DDG ar Dep. type depDistm[i+2℄ := x; y := m[i℄; a −→ b du 2y := m[i+3℄; m[i℄ := x; a −→ b ud 3m[i℄ := x; y := m[i-2℄; a −→ b du 2y := m[i℄; m[i-3℄ := x; a −→ b ud 3y := t; t := x + i; a −→ b ud 0b −→ a du 1t = x + i; y := t; a −→ b du 0b −→ a ud 1y := x + i; y := t; a −→ b dd 0b −→ a

Software PipeliningDependenesExamples of DependenesInstrutions a and b our onseutively in the loop body.i is the loop ontrol variable.instr. a instr. b DDG ar Dep. type depDistm[i+2℄ := x; y := m[i℄; a −→ b du 2y := m[i+3℄; m[i℄ := x; a −→ b ud 3m[i℄ := x; y := m[i-2℄; a −→ b du 2y := m[i℄; m[i-3℄ := x; a −→ b ud 3y := t; t := x + i; a −→ b ud 0b −→ a du 1t = x + i; y := t; a −→ b du 0b −→ a ud 1y := x + i; y := t; a −→ b dd 0b −→ a dd 1

Software PipeliningDependenesThe General Software-Pipeline Sheduling ProblemGiven:
◮ a loop with body L and l iterations,
◮ a p�times parallel arhiteture.Wanted: E�ient parallel shedule for Ll respeting thedependene and resoure onstraints,oneptually, Ll (L unrolled l times) transformed into αKkω

K, the Kernel, body of a new loop,
α the Prelude,
ω the Postlude.A new iteration of the new loop is initiated after a �xed number ofyles, alled the Initiation Interval, II .

Software PipeliningDependenesSheduling Constraints due to DependenesFor a, operation in L, let an be the instane of a in the n�th iterationConstraint for any shedule σ due to (a → b, depDist, delay):
σ(bm+depDist) ≥ σ(am) + delay

d
e
l
a
y

T

I

M

E

I t e r a t i o n s

with (a −→ b, ., delay)

with (a −→ b, ., 2)with (a −→ b, ., 1)am Earliest sheduling positions for instrutions binstrutions independent of a

Software PipeliningDependenesSheduling due to Dependene Constraints 2
E

1

2

3

4

(0,1)

(0,1)

(0,1)

(1,1)

1

2

3

4

1

2

3

4

1

2

3

4

I t e r a t i o n

T

I

M

E

1

2

3

4

1

2

3

4

1

2

3

4

I t e r a t i o n

T

I

M

E

1

2

3

4

1

2

3

4

1

2

3

4

I t e r a t i o n

T

I

M

◮ dependene graph is unrolled, loop-arried dependenesinstantiated,
◮ operations are moved up while arrows still go downwards(respeting delays).

Software PipeliningDependenesThe In�uene of the Dependene Distane
E

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

I t e r a t i o n

T

I

M

E

1

2

3

4

(0,1)

(0,1)

(0,1)

(1,2)

I t e r a t i o n

T

I

M

E

I t e r a t i o n

T

I

M

Software PipeliningDependenesImpliations of the Sheduling Constraints
◮ bigger value of delay −→ later plaement of b in the shedule,
◮ bigger value of depDist −→ later instane of b onerned −→more freedom to shedule,
◮ best ahievable speedup depends on theslope = delay/depDist.

T

I

M

E

tthe steepest slope determines the shedule
amI t e r a t i o n s

am+e all instrutions independent (doall loop)(0,1)(0,1)(0,1) (1,1)

sequential order enfored the extreme ases
bm+dbm

Software PipeliningDependenesReurreneReurrene is the diret or indiret inter-iteration dependene of anoperation on itself (a yle).Operation without reurrene: all instanes an be exeuted inparallel to eah other.Let Θ = {d1, . . . , dn} be an elementary yle of the dependenegraph on an operation a.delayΘ =
∑ni=1 delay(di)depDistΘ =
∑ni=1 depDist(di)

Software PipeliningDependenesStrongly-Conneted Components in the Dependeny GraphThe algorithm will onsider strongly-onneted omponents of thedependeny graph.Consequenes of yli dependene:
◮ any predeessor is also a suessor,
◮ topologial sorting has to be modi�ed to shedule operationswithout all predeessors being already sheduled,
◮ sheduling an operation de�nes a deadline for all its suessors

Software PipeliningDependenesSheduling Constraints due to Resoures
Eah instane of an operation has other instanes from suessiveiterations exeuted II , 2× II , 3× II , . . . yles later.
=⇒ Con�its on a resoure in a single iteration must be avoided attimes that are multiples of II apart.
=⇒ Total shedule is on�it-free if within a single iteration noresoure is used more than one at the same time modulo II .

Software PipeliningDependenesIdentifying a KernelProblem: Detet a repeating pattern in a newly made shedule tomake it the kernel.
4: d[i] := b[i] % n;

1

2

3 4

(0,1)

(0,1) (0,1)

(1,1) I3:
I4:
I5:

1 1 1
2
3,4 2
 3,4 2
 3,4

ITERATIONS

I1:
I2:

T
I
M
E

for i:=

1: a[i] := i * i;

2: b[i] := a[i] * b[i − 1];

3: c[i] := b[i]/n;Greedy sheduling, i.e. sheduling operation 1 as early as possible,does not form a kernel.

Software PipeliningDependenesStagesShedule for a single iteration of the original loop, L, divided into asequene of stages of length II .Number of stages is the stage ount, SC .
Stage Count 3

1

2

3 4

(0,1)

(0,1) (0,1)

(1,1) I3:
I4:
I5:

1
2 1
3,4 2 1
 3,4 2
 3,4

ITERATIONS

I1:
I2:

T
I
M
E

STAGES

1
2
3,4

Software PipeliningDependenesConstraints
1. dependenies and resoure onstraints2. all operations from L our one in K,3. width of K ≤ pGoal: |K| minimal

Software PipeliningDependenesProperties of the Kernel
◮ K ontains operations of SC onseutive iterations of L
◮ Initiation Interval, II = |K|, the distane between twoonseutive iterations of the new loop,
◮ II = |K| is bounded from below by the slope, delay/depDist,where the ar ontrolling the II is annotated with

(depDist, delay).Observation:
◮ Prelude starts SC − 1 iterations,
◮ Postlude �nishes SC − 1 iterations,
◮ all instrutions of the original loop our one in K.

Software PipeliningDependenesExample (revisited)
Kernel

1

2

3

4

(0,1)

(0,1)

(0,1)

(2,1)

T
I
M
E

I1:
I2:
I3:
I4:
I5:
I6:
I7:

1 1
2 2 1 1
3 3 2 2 1 1
4 4 3 3 2 2 1 1
 4 4 3 3 2 2
 4 4 3 3
 4 4

ITERATIONS

delay Prolog}
depDist

Slope

} EpilogSlope is delay/depDist = 1/2 of loop-arried dependene.

Software PipeliningDependenesApproahesmove-then-shedule:move ode forwards/bakwards over loop bakedge toimprove shedule;Problem: whih operations to move and in whihmultipliity?shedule-then-move:�nd a shedule;transform ode aordingly
◮ unroll-while-sheduling: Kernel Reognitionomplex bookkeeping of sheduling staterequiredor
◮ generate and solve set of modulo onstraints:Modulo Sheduling

Software PipeliningModulo ShedulingModulo ShedulingTreats
◮ innermost loops
◮ one iteration of original loop (to start with; later tried withseveral opies if available parallelism allows)Basi steps1. ompute lower bound for II2. �nd shedule3. generate kernel ode4. generate prelude and postlude ode

Software PipeliningModulo ShedulingLower Bound IIminIImin to be determined before sheduling; starting value for iteration.Depends on the Resoure Consumption of the operations and onDependenes between the operationsIImin ≥ max {IIres , IIdep}where IIres = min{|σ| |σ on�it-free shedule}and IIdep = maxyles Θ

{⌈ delayΘdepDistΘ ⌉}These terms will be explained in the following slides.

Software PipeliningModulo ShedulingDetermining IIresReservation Table for eah operation O,RTO : yles× resoures → {0, 1} de�nes the resoureonsumption at eah yle relative to issue time 0.Resoures are
◮ Soure and Result Buses,
◮ Stages of funtional units.Later, during sheduling used: Shedule Reservation Table,(Modulo Reservation Table, MRT),reords whih resoure is used by whih operation at a given timeof a shedule under onstrution.When an operation is attempted to be sheduled at time t itsreservation table is translated by t anded onto the SRT to hekfor resoure on�its.If no on�it, RTO is or'ed onto the urrent Shedule ReservationTable.

Software PipeliningModulo ShedulingComplexitiesComplexity of determining IIres depends on the type of resoureonsumptionSimple Reservation Tables: single resoure in a single yle at issueyleBlok Reservation Table: single resoure for multiple, onseutiveyles starting at issue yleComplex Reservation Table: all othersAlternative Reservation Tables: for operations exeutable ondi�erent funtional unitsDetermining the minimal IIres is equivalent to binpaking.

Software PipeliningModulo ShedulingA HeuristisIgnore dependenes.1. Sort operations of loop body in inreasing order of number ofalternatives2. Take next operation a from the list; for eah resoure r :add the number of times a uses r to usageCount(r),hoose alternative with lowest (partial) maximal usage ountover all resouresUsage ount for most heavily used resoure onstitutes theapproximated IIres

Software PipeliningModulo ShedulingDetermining IIdepLet Θ = {d1, . . . , dn} be an elementary yle of the dependenegraph delayΘ =
∑ni=1 delay(di)depDistΘ =
∑ni=1 depDist(di)Property of eah shedule σ and eah operation a from L

σ(am+i) − σ(am) = II × i

Software PipeliningModulo ShedulingDetermining IIdep (ont'd)Resulting Constraint for IIdep: ∀Θ. depDistΘ × IIdep ≥ delayΘTransformed into:
∀Θ. IIdep ≥

⌈ delayΘdepDistΘ⌉Choose: IIdep = max
Θ

{⌈ delayΘdepDistΘ⌉}

Software PipeliningModulo ShedulingComputing IIdep
Alternatives:

◮ Enumerate all elementary yles and determinemaxΘ

{⌈ delayΘdepDistΘ ⌉}

◮ shortest-path algorithm
◮ minimal ost-to-time ratio yle problem

Software PipeliningModulo ShedulingAlgorithm for the minimal ost-to-time ratio yle problemInput: IIminMinDist[i , j] is the smallest legal interval between σ(i) and σ(j) inthe same iteration.InitializeMinDist[i , j] =

−∞ if no edge from i to jmax(max{d |(a → b, 0, d)},max{delay(a) − depDist(e) × II | depDist(e) > 0})Iterate the minimal ost-to-time ratio yle algorithm with inreasingIImin:
◮ MinDist[i , i] > 0: impossible =⇒ inrease II
◮ MinDist[i , i] < 0 for all i : =⇒ slak around every yle =⇒derease II ;
◮ Termination, if at least for one i MinDist[i , i] = 0.

Software PipeliningModulo ShedulingIterative Modulo Shedulingproedure ModuloSheduleII = IImin; found := false;(* some heuristi ontrol *)(* to enfore termination *)do if iterativeShedule(II,...)then found := trueelse II := II + 1until found
II := IImin

Find Schedule

Modulo

Schedule

Compute
IImin

with II

Increase
 II

valid invalid

Sheduling Priority: Basis is Height-based priority (assumesayliity) extended for inter-iteration dependenes.

Software PipeliningModulo ShedulingInstrution Sheduling vs. Operation ShedulingDi�erene: what is the subjet of sheduling?Instrution Sheduling Operation Shedulinginstrution to be �lled operation to be sheduledat eah point in time: selet an operation:selet max. number of andidateoperations that an be sheduledand shedule them shedule it at a legal andpro�table positionModulo sheduling uses operation sheduling, sine operations mayhave to be sheduled several times.

Software PipeliningModulo ShedulingDi�erene of Modulo Sheduling to Ayli List Sheduling
◮ Operation an be unsheduled by baktraking =⇒operation an be sheduled several times =⇒modulo sheduling uses operation sheduling.
◮ Modulo Shedule Reservation Table,MRT [t mod II , r] reords use of resoure r at time t

=⇒ length of MRT = II
◮ on�it at time t =⇒ on�it at all times t ± n × II

=⇒ sheduling only for a andidate interval
[MinTime,MaxTime] where MaxTime = MinTime + II − 1

◮ List Sheduling always �nds a time slot.Proedure TimeSlot might not �nd a legal shedule of theurrent operation in the interval [MinTime,MaxTime] =⇒baktraking.

Software PipeliningModulo Shedulingfuntion IterativeShedule(...)funtion IterativeShedule(II, ...) boolean;var Op, Estart, MinTime, MaxTime, TimeSlot: int;beginshedule(START, 0); (* START pseudooperation *)while list of non-sheduled operations is not empty and ... dobeginOp := highestPriorityOperation;Estart := CalulateEarliestStart(Op);MinTime := Estart;MaxTime := MinTime + II -1;TimeSlot := TimeSlot(Op, MinTime, MaxTime);Shedule(Op, TimeSlot); (* may unshedule onfliting operations *)end;IterativeShedule := (list of non-sheduled operations empty?)end;

Software PipeliningModulo Shedulingfuntion TimeSlot(...)funtion TimeSlot(Op, MinT, MaxT: int) int;var CurrTime, ShedSlot: int;beginCurrTime := minT; ShedSlot :=0;while ShedSlot = 0 and CurrTime < MaxT doif ResoureConflit(Op, CurrTime)then CurrTime := CurrTime + 1;else ShedSlot := CurrTimefi;if ShedSlot = 0then if (NeverSheduled(Op) or MinT > PrevShedTime[Op℄then ShedSlot := MinTelse ShedSlot := prevShedTime[Op℄+1fi;TimeSlot := ShedSlotend

Software PipeliningModulo ShedulingHeight-based Priority and Earliest StartPriority funtion: height-based extended to yli and inter-iterationdependenes.Uses e�etive delay.E�Delay(p → q) = delay(p → q) − II ∗ depDist(p → q)HeightR(p) =

0 if p is STOPmaxq∈su(p)(0,HeightR(q) + delay(p → q)
−II ∗ depDist(p → q)) otherwiseWarning: Reursion di�ult to resolve!Estart(p) = maxq∈pred(p)

0 if q is non-sheduledmax(0, ShedTime(q)+delay(q → p) − II ∗ depDist(q → p)) otherwise

Software PipeliningModulo ShedulingCandidate Time SlotsCorretness of shedule
◮ as for resoure usage: guaranteed by MRT
◮ as for dependenes: uses Estart,earliest time slot for operation to be sheduledPeuliarity in iterative modulo sheduing:not all predeessors may have been sheduled or may have remainedsheduledConstraints for sheduling the urrent operation:
◮ dependenes on predeessors: Estart yields earliest slot
◮ dependenes on suessors: on�its solved by unsheduling

Software PipeliningModulo ShedulingUnsheduling
◮ slot in [MinTime,MaxTime] found without resoure on�it:unshedule operation with dependene on�it
◮ no slot in [MinTime,MaxTime] found without resoureon�it: hoose time slot + hoose operation to unshedule

Software PipeliningModulo ShedulingInrease Exploitable Parallelism
◮ IF-onversion to eliminate forward branhes
◮ Elimination of pseudo dependenes introdued by registeralloation
◮ Rotating registers or variable expansion

Software PipeliningModulo ShedulingPrediated ExeutionMotivation
◮ osts of speulation:proessor speed is growingissue width is growingstati speulation: more ode moved past branhes � moreompensation ode inserteddynami speulation: higher osts of mispredition
◮ branhes limit ILP

Software PipeliningModulo ShedulingPrediated InstrutionsPrediated instrution add r1,r1,1 (P)onditionally exeuted depending on the value in prediate registerPExeution
◮ Normal instrution feth
◮ prediate true: normal exeution
◮ prediate false: instrution nulli�ed � no e�et on the state

Software PipeliningModulo Sheduling
Prediate-register setting instrutionpred_<omp> Pout,1(boolop1),Pout,2(boolop2), s1, s2, (Pin)1. Compares s1 with s2 aording to <omp>,2. ombines the value of Pin with the result

◮ using boolean operation boolop1 to ompute Pout,1
◮ using boolean operation boolop2 to ompute Pout,2Available boolean operations: Unonditional (U), onditional, NOT,AND, ANDNOT, . . .

Software PipeliningModulo ShedulingIf-ConversionConditionals translated into prediated odeoutermost onditional:if-onv(if omp(a,b) then e1 else e2 , true) =pred_omp q1(U), q2(NOT U), a, b;if-onv(e1, q1);if-onv(e2, q2);where q1 and q2 are unused prediatesnested onditionals:if-onv(if omp(a,b) then e1 else e2 , p) =pred_omp q1(AND), q2(ANDNOT), a, b, p;if-onv(e1, q1);if-onv(e2, q2);where q1 and q2 are unused prediates

	Introduction

