
Tree Parsing for Code Selection

Tree Parsing for Code Selection

Reinhard Wilhelm
Universität des Saarlandes
wilhelm@cs.uni-sb.de

3. Januar 2010

Tree Parsing for Code Selection

Code Generation

Real machines instead of abstract machines:

◮ Register machines,

◮ Limited resources (registers, memory),

◮ Fixed word size,

◮ Storage hierarchy,

◮ Intraprocessor parallelism.

Tree Parsing for Code Selection

Phases in code generation

code selection: selecting semantically equivalent sequences of
machine instructions for programs,

register allocation: exploiting the registers for storing values of
variables and temporaries,

instruction scheduling: reordering instruction sequences to exploit
intraprocessor parallelism.

Tree Parsing for Code Selection

Complexity

Many subproblems in the compiler backend are complex:
Early results:
Bruno&Sethi[1976]: generation of optimal code for straight-line
programs and 1-register machine is NP-complete
Garey&Johnson[1979]: Instruction scheduling, even for very simple
target machines, is NP-hard.
What makes the difference in code generation?

input: straight-line programs w/o common subexpressions

machine model: register constraints, e.g., interchangeable registers
or not, operations on register pairs or not

Common subexpressions need directed acyclic graphs (DAGs).
Code generation for expression trees has efficient solutions.

Tree Parsing for Code Selection

Phase Ordering Problem

Issues:

◮ Software Complexity

◮ Result Quality

◮ Order in Serialization

Tree Parsing for Code Selection

Code Selection

Task: Select (best) instruction sequences for a program.

◮ Control statements – translated as for abstract machines,

◮ Procedure organisation – same as on abstract machines,

◮ Expressions, variable and data structure access – many
different translations.

Expressions (without common subexpressions) to be translated into
(locally) optimal code according to some cost measure.

Tree Parsing for Code Selection

An Example CISC Architecture, the Motorola 68000

◮ 8 Data registers,

◮ 8 Address registers,

◮ many addressing modes,

◮ 2–address machine, i.e., two operand locations in each
instruction, one is also the result location,

ADD D1, D2

adds the contents of registers D1 and D2 and stores the result
in D2.

◮ most instructions are scalable to byte (.B), word (.W), double
word (.L) operands.

Tree Parsing for Code Selection

Addressing Modes

◮ Dn Data register direct: cont(Dn).

◮ An Address register direct: cont(An).

◮ (An) Address register indirect: St(cont(An)).

◮ d(An) Address register indirect with address distance:
St(cont(An) + d) with 16-Bit-constant d .

◮ d(An, Ix) Address register indirect with Index and Address
distance: St(cont(An) + cont(Ix) + d) with An used as base
register, Ix index register (either address or data register),
8-Bit-distance d .

◮ x Absolute short: St(x) with 16-Bit-constant x .

◮ x Absolute long: St(x) with 32-Bit-constant x .

◮ #x Immediate: x .

Tree Parsing for Code Selection

Execution Times

Addressing mode Byte, Word Double Word

Dn Data register direct 0 0

An Address register direct 0 0

(An) Address register indirect 4 8

d(An) Address register indirect with 8 12
Address distance

d(An, Ix) Address register indirect with Index 10 14
and Address distance

x Absolute short 8 12

x Absolute long 12 16

#x immediate 4 8

Tree Parsing for Code Selection

Alternative Code Sequences

Load a Byte into the lower quarter of data register D5,
the address results from adding base register A1’s content
to the contents of the lower half of data register D1 and
incrementing the result by 8.
The execution time, 14 cycles, consists of
the execution time for the operation proper, 4 cycles, and
the execution time for the addressing, 10 cycles.

MOVE.B 8(A1, D1.W), D5 ADDA #8, A1 costs: 16 ADDA D1.W, A1 costs: 8
total costs 8 ADDA D1.W, A1 costs: 8 MOVE.B 8(A1), D5 costs: 12

MOVE.B (A1), D5 costs: 8 total costs 20
total costs 32

Tree Parsing for Code Selection

Code Sequences for b := 2 + a[i]

b, i integer variables, a: array[1 ..10] of integer.
a, b, i in the same frame addressed by address register A5,
Relative addresses: b 7→ 4, i 7→ 6, a 7→ 8.
The code for addressing a[2] computes:
A5 + 8 + value(i) * 2

MOVE 6(A5), D1 costs 12 MOVE.L A5, A1 costs 4
ADD D1, D1 costs 4 ADDA.L #6, A1 costs 12
MOVE 8(A5,D1), D2 costs 14 MOVE (A1), D1 costs 8
ADDQ #2, D2 costs 4 MULU #2, D1 costs 44
MOVE D2, 4(A5) costs 12 MOVE.L A5, A2 costs 4

total costs 46 ADDA.L #8, A2 costs 12
ADDA.L D1, A2 costs 8
MOVE (A2), D2 costs 8
ADDQ #2, D2 costs 4
MOVE.L A5, A3 costs 4
ADDA.L #4, A3 costs 12
MOVE D2, (A3) costs 8

total costs 128

Tree Parsing for Code Selection

An Example RISC Architecture, the MIPS

◮ RISC microprocessor architecture developed by John L.
Hennessy at Stanford University in 1981

◮ no interlocked pipeline stages

◮ Load/Store-Architecture (R3000)

◮ 32 registers

◮ 230 memory words = 232 bytes

◮ Still used: Playstation Portable, PS2, etc.

Tree Parsing for Code Selection

Instruction Set (MIPS R3000)

Arithmetic:

◮ add $1, $2, $3
◮ sub $1, $2, $3
◮ addi $1, $2, CONST

Data Transfer:

◮ lw $1, CONST($2)
◮ sw $1, CONST($2)

Cond. Branch: beq $1, $2, CONST

Unconditional Jumps:

◮ j CONST
◮ jr $1
◮ jal CONST

Logical operations: Bitwise Shift, etc.

Pseudoinstructions: Translated into real instructions before assembly:
bgtz Label (branch greater than), etc.

Tree Parsing for Code Selection

Example Code

if (x <= 0) bgtz $1 el
y = x + 1; addi $2, $1, 1

else j end
x = y+x; el: addi $1, $2, $1

... end: ...
Assuming
x in $1 and y in $2

Tree Parsing for Code Selection

Looking for a Description Mechanism

Several compilation subtasks

◮ can be formally described and

◮ their implementation can be automatically generated.

Examples:
compilation
subtask

description
forma-
lism

acceptor desired
output

algorithmic
aspects

properties

lexical
analysis

regular
expressi-
ons

finite au-
tomata

final
states

r.e. 7→ nfa,
nfa 7→ dfa,
minimizati-
on

equivalences,
closure
properties,
decidabilities

syntax
analysis

context-
free
gram-
mars

pushdown
automata

syntax
trees, de-
rivations

(determ.)
parser
generation

non-equiv. of
det. and non-
det. pda, un-
decidabilities

Tree Parsing for Code Selection

compilation
subtask

description
formalism

acceptor desired
output

algorithmic
aspects

properties

lexical
analysis

regular ex-
pressions

finite au-
tomata

final
states

r.e. 7→ nfa,
nfa 7→ dfa,
minimizati-
on

equivalences,
closure pro-
perties,
decidabili-
ties

syntax
analysis

context-
free
grammars

pushdown
automata

syntax
trees, de-
rivations

(determ.)
parser
generation

non-equiv.
of det. and
non-det.
pda, undeci-
dabilities

code
selection

regular
tree
grammars

finite tree
automata

derivations rtg 7→ fta,
fta 7→ bu-
dfta

closure pro-
perties, de-
cidabilities

Tree Parsing for Code Selection

Machine Description

◮ Input to Code Selector Generator,

◮ Regular Tree Grammar, terminals from the program
representation, non–terminals represent machine resources,

◮ Often ambiguous,

◮ Each rule has associated costs,

◮ Factorization of addressing modes reduces size.

DREG

AREG IREG

plus bconst

m

plus

Tree Parsing for Code Selection

Generated Code Selector

◮ Parses intermediate representations (IR) of programs,

◮ Computes derivations according to “machine grammar”, each
corresponding to one instruction sequence,

◮ Has to select cheapest derivation, corresponding to (locally)
cheapest code sequence

◮ May compute costs in states or use dynamic programming.

Tree Parsing for Code Selection

Tree Languages

◮ Alphabet with arity is a finite set Σ of operators together
with a function ρ : Σ → N0, arity.

◮ Σk = {a ∈ Σ | ρ(a) = k}.
◮ The homogeneous tree language over Σ is the following

inductively defined set T (Σ) :
◮ a ∈ T (Σ) for all a ∈ Σ0;
◮ Are b1, . . . , bk in T (Σ) and is f ∈ Σk , so is

f (b1, . . . , bk) ∈ T (Σ).

Example:
Σ = {a, cons , nil},
ρ(a) = ρ(nil) = 0, ρ(cons) = 2.
Some trees over Σ:
a, cons(nil , nil), cons(cons(a, nil), nil).

Tree Parsing for Code Selection

Patterns, Substitutions

V infinite set of variables (arity 0).

◮ p ∈ T (Σ ∪ V) is called a pattern over Σ,

◮ p is linear if no variable occurs twice in p.

◮ A Substitution Θ maps variables to patterns,
Θ : V → T (Σ ∪ V).

◮ Θ extended to Θ : T (Σ ∪ V) → T (Σ ∪ V) by
tΘ = xΘ, if t = x ∈ V and
tΘ = a(t1Θ, . . . , tkΘ), if t = a(t1, . . . , tk).

Let V = {X}.
X , cons(nil ,X), cons(X , nil) are patterns over Σ.

Tree Parsing for Code Selection

Regular Tree Grammars

Regular Tree Grammar (RTG) G = (N,Σ,P ,S) consists of

◮ N, finite set of non–terminals,

◮ Σ, finite alphabet (with arity) of terminals (operators labeling
nodes)

◮ P , finite set of rules X → s where X ∈ N and s ∈ T (Σ ∪ N),

◮ S ∈ N, the start symbol.

Notions:

◮ p : X → Y chain rule,

◮ p : X → s has type (X1, . . . ,Xk) → X , if j -th occurrence of
a non–terminal in s (counted from the left) is Xj .

◮ s̃ results from s by replacing non–terminal Xj by variable xj .

Tree Parsing for Code Selection

Why “Regular”?

◮ Path words form a regular word language,

◮ Regular tree languages are closed under union, intersection,
and complement,

◮ Emptiness and therefore containment are decidable.

Tree Parsing for Code Selection

Example: Lists

◮ G1 = (N1,Σ,P1, L)

◮ Σ = {a, cons , nil}
where ρ(a) = ρ(nil) = 0, ρ(cons) = 2

◮ N1 = {E , L} and

◮ P1 = { L → nil ,
L → cons(E , L),
E → a}

L(TG1) is the language of linear lists of a’s including the empty list,
i.e. L(G1) = {nil , cons(a, nil), cons(a, cons(a, nil)), . . .}.

Tree Parsing for Code Selection

Example: Machine Grammar

◮ Gm = (Nm,Σ,Pm,REG);

◮ Σ = {const,m, plus ,REG}
where ρ(const) = 0; ρ(m) = 1, ρ(plus) = 2,

◮ Nm = {REG}

◮ Pm = { addmc : REG → plus(m(const),REG),
addm : REG → plus(m(REG),REG),
add : REG → plus(REG ,REG),
ldmc : REG → m(const),
ldc : REG → const,
ld : REG → REG}

Tree Parsing for Code Selection

Gm describes a subset of an instruction set of a simple processor,
rules are marked with names of instructions.

The first three instructions add

◮ the contents of a memory cell, whose address is given by a constant,

◮ the contents of a memory cell, whose address is in a register, resp.,

◮ the contents of a register

to the contents of a register and put the result into a register.

The last three instructions load into a register:

◮ the contents of a memory cell whose address is given by a constant,

◮ a constant, and

◮ the contents of a register, resp.

Tree Parsing for Code Selection

Example Derivations

plus

m

m

const

plus

REGconst

const

m

plus

plus

REG

m

const
REGREG

plus

plus

REG
plus

REGREG

addmc

addmc

REG

add

ldmc add

ldmc ld

REG

const

m

plus

REG REG
addmc addmc

plus

plus

REG

REG

const

m

ldmc ldmc

REG

plus

REG

REG

plus

REG

ld add add

Derivation Tree
Derivation tree

Tree Parsing for Code Selection

Derivation Tree

An X–derivation tree for tree t ∈ T (Σ ∪ N) according to tree
grammar G is a tree ψ ∈ T (P ∪ N), such that

◮ Is ψ ∈ N, then ψ = X = t.

◮ Is ψ 6∈ N, then ψ = p(ψ1, . . . , ψk) for a rule p : X → s ∈ P of
type (X1, . . . ,Xk) → X , such that t = s̃{x1/t1, . . . , xk/tk}
and ψj are Xj -derivation trees for the tj .

t1 t2 tk

ψ1 ψ2
ψk

p

XkX2X1

t
s

Tree Parsing for Code Selection

The generated language

L(TG) = {t ∈ T (Σ) | ∃ψ ∈ T (P ∪ N) :
ψ is S-derivation tree for t}.

Tree Parsing for Code Selection

The Tree Analysis Problem

◮ An instance of the tree analysis problem consists of an RTG
G and a tree t.

◮ A solution consists of the set of all derivation trees of t
according to G ,

◮ A Tree Analyzer for G solves the tree analysis problem for G
and all its trees,

◮ A Tree Analyzer Generator generates a tree analyzer for
each RTG.

Tree Parsing for Code Selection

Finite Tree Automata, Intuition

◮ Generalization of finite word automata to trees,

◮ Transitions (q, a, q1, . . . , qk), where
a ∈ Σk , q state at node n labeled a,
q1, . . . , qk state at children of n,

◮ Non-deterministic automaton “guesses” computations in any
order (like a puzzle).

Tree Parsing for Code Selection

Traversal strategies,

bottom up:

a a

q1 q2 qk
q1 q2 qk

q

top down:

a

...

a
q q

q1 q2 qk

Tree Parsing for Code Selection

Finite Tree Automaton (FTA)
A = (Q,Σ, δ,QF), where

◮ Q, finite set of states,

◮ QF ⊆ Q, final states,

◮ Σ, input alphabet (with arity),

◮ δ ⊆
⋃

j≥0 Q × Σj × Q j , transition relation.

◮ A is top down deterministic, if
◮ exactly one final state, and
◮ at most one transition (q, a, q1 . . . , qk) ∈ δ

for all a and q.

◮ A is bottom up deterministic, if
at most one transition (q, a, q1 . . . qk) ∈ δ for all a and all
q1, . . . , qk .
In this case, we write δ as partial function:
δ :

⋃
j≥0 Σj × Q j → Q

Tree Parsing for Code Selection

Computation

◮ A annotates the nodes with states;
hence new alphabet Σ × Q = {〈a, q〉 | a ∈ Σ, q ∈ Q},
where ρ(〈a, q〉) = ρ(a).

◮ q-computation φ of A on tree t = a(t1, . . . , tm):
a tree 〈a, q〉(φ1, . . . , φm) ∈ T (Σ × Q), where
φj are qj -computations for the tj , j = 1, . . . ,m,
(q, a, q1 . . . qm) is a transition.

◮ Is q ∈ QF , then φ is accepting.

◮ The language L(TA) consists of the trees with accepting
computations.

◮ A state resp. transition is superfluous if it does not occur in
any accepting computation.

Tree Parsing for Code Selection

Example Computation

DFTA Ab = (Qb,Σb, δb ,QF ,b) with
states Qb = {qe , qo},
alphabet Σb,0 = {c} and Σb,2 = {a},
final states QF ,b = {qe}
transitions: δb = { (qo , c)

(qe , a, qo , qo)
(qo , a, qe , qo)
(qo , a, qo , qe)
(qe , a, qe , qe)}

Accepts trees with even number of c ’s.

Tree Parsing for Code Selection

Tree and qe–computation

a

c

c

a

a c

c

〈c , qo〉

〈c , qo〉

〈c , qo〉〈a, qe〉

〈a, qo〉

〈a, qe〉

〈c , qo〉

Tree Parsing for Code Selection

Determinism – Non–determinism

◮ Bottom up NFTAs and Top down NFTAs are equivalent,

◮ Bottom up DFTAs and Top down DFTAs are not equivalent;
example language cannot be recognized by top down DFTA.

◮ NFTAs are equivalent to bottom up DFTAs (powerset
construction).

(Bottom up) DFTA:

◮ At most one computation for each tree,

◮ At most one state at each node,

◮ δ extended to a partial function δ : T (Σ) → Q by:
δ(t) = δ(a, δ(t1) . . . δ(tk)), if t = a(t1, . . . , tk).

◮ δ(t) = q iff there is a q–computation for t.

Tree Parsing for Code Selection

Generating Tree Parsers

The generation (and the explanation) process:
Input: G

1. Generate NFTA AG ,

2. Apply powerset construction to obtain DFTA P(G).

Later: Consider variant with costs.

Tree Parsing for Code Selection

How AG Works

AG

◮ tries to cover the given tree with right sides of productions
(like a puzzle),

◮ does reductions to check whether neighbouring rules fit.

X → t

s

t

X

Tree Parsing for Code Selection

States and transitions of AG

◮ States: “Tree Items”, subtrees of right sides,
interpretation: what has been analyzed so far.

◮ Transitions: analyze next generation of a right side,

X → a

a

a

s

s ′ s ′′

s ′′

s ′′s ′

s ′

◮ What about “complete items”, i.e. full right sides s?
do reduction in the same step, i.e., new state is X , not s.

Tree Parsing for Code Selection

AG , Definition
AG = (QG ,Σ, δG , {S}), where

◮ QG = N ∪ {s ′ | ∃(X → s) ∈
P , where s ′ is proper subtree of s}.

◮ Transition relation δG : transitions of the forms
{(s, a, s1 . . . sk) | s = a(s1, . . . , sk) ∈ QG} and
{(X , a, s1 . . . sk) | ∃(X → s) ∈ P and
s = a(s1, . . . , sk)}.

Tree Parsing for Code Selection

Problem with chain rules:

◮ AG would have to “step on the spot” doing chain reductions.
However, AG has to consume at least one terminal per step,

◮ Chain reductions are precomputed and integrated into δ.

δG := {(s, a, s1 . . . sk) | s = a(s1, . . . , sk) ∈ QG} ∪ (proper transition)
{(X , a, s1 . . . sk) | ∃(X ′ → s) ∈ P : (reduction)
∃X–derivation tree for X

′ and s = a(s1, . . . , sk)} (chain rules)

Tree Parsing for Code Selection

Example AGm

AGm
= (QGm

,ΣGm
, δGm

,QF ,Gm
) for Gm has the state set

QGm
= {const,REG ,m(const),m(REG)}

and the transitions
δGm

= { (const, const, ǫ)
(REG , const, ǫ)
(REG ,REG , ǫ)
(m(const),m, const)
(REG ,m, const)
(m(REG),m,REG)
(REG , plus,m(const) REG)
(REG , plus,m(REG) REG)
(REG , plus,REG REG)}

Tree Parsing for Code Selection

Example Computation of AGm

addmc

REG

b)

addmc

addmc

REG

〈const, const〉

〈plus,REG 〉 :addmc

〈m,m(const)〉

〈m,m(const)〉

〈plus,REG 〉 :addmc

〈const, const〉 〈REG,REG 〉

Tree Parsing for Code Selection

Properties

G RTG and t input tree.

◮ There exists an X–derivation tree for t according to G iff
there exists an X–computation for t in AG .
In particular: L(G) = L(AG).

Tree Parsing for Code Selection

Principle of the Powerset Construction

Finite Word Automata:
∃ old states q1, q2 and word w such that
(q0,w) ⊢∗

M (q1, ε) and (q0,w) ⊢∗
M (q2, ε)

=⇒ ∃ new state Q such that q1, q2 ∈ Q and
δ∗d (qd ,w) = Q

Finite Tree Automata:
∃ old states q1, q2 and tree t such that
∃q1 − and q2 − computations for t
=⇒ ∃ new state B such that q1, q2 ∈ B and
δp(t) = B

Tree Parsing for Code Selection

Word automata

a

a

{.....................}

ε

ε

ε

new state P

new state Q such that δ(P, a) = Q

Tree Parsing for Code Selection

Tree automata

{............} {..................}

new state B with (B , a,B1 . . .Bk) ∈ δp

new state B1

a q1 q2 q3

new state Bk

Tree Parsing for Code Selection

Powerset Construction

Powerset automaton P(A) is built iteratively,

Q
(n)
p and δ

(n)
p occur in computations on trees of height ≤ n − 1.

Let A = (Q,Σ, δ,QF) be a NFTA.
Its powerset automaton is the DFTA P(A) = (Qp,Σ, δp ,Qp,F),
where

◮ Qp = 2Q ,

◮ Qp,F := {B ∈ Qp | B ∩ QF 6= ∅},

◮ states and transitions are computed in the iteration:

Qp :=
⋃

n≥0 Q
(n)
p and δp :=

⋃
n≥0 δ

(n)
p , where:

◮ Q
(0)
p = ∅;

◮ Be n > 0. For a ∈ Σk and B1, . . . ,Bk ∈ Q
(n−1)
p let

B := {q ∈ Q | ∃q1 ∈ B1, . . . , qk ∈ Bk : (q, a, q1 . . . qk) ∈ δ}.

Is B 6= ∅, then B ∈ Q
(n)
p and (B, a,B1 . . .Bk) ∈ δ

(n)
p .

Tree Parsing for Code Selection

The Powerset Construction on Tree Parsers

a

a

a

a

a

a

Tree Parsing for Code Selection

Example
The powerset automaton for AGm

has state set
QGm

= {q1, q2, q3, q4} where
q1 = {REG}
q2 = {const,REG}
q3 = {m(REG)}
q4 = {m(const),REG ,m(REG)}

and transition function δGm
:

state operator children state(s)

q1 REG ε
q2 const ε
q3 m q1

q4 m q2

q1 plus q1 q1

q1 plus q4 q1

q1 plus q3 q1

Tree Parsing for Code Selection

Properties

1. For each t ∈ T (Σ):
◮ Is δp(t) defined, then δp(t) = {q | ∃q–computation on t}.
◮ Is δp(t) undefined, then there is no q ∈ Q with a

q–computation of A for t.
◮ δp(t) ∩ N = {X ′ ∈ N | ∃X ′–derivation tree for t}.

2. L(A) = L(P(A)).

3. For each state B ∈ Qr there exists a tree t, such that
δp(t) = B .

Tree Parsing for Code Selection

Adding Costs

◮ Rules have cost functions, i.e. costs of the instruction,

◮ Translated into cost functions for the transitions of the NFTA,

◮ Deterministic bottom up automaton constructs cheapest
derivations.

Tree Parsing for Code Selection

◮ Rule p of type (X1, . . . ,Xk) → X gets k-place function
C (p) : N0

k → N0

◮ C extended to derivation trees ψ.
ψ = X ∈ N, then C (ψ) := 0.
ψ = p(ψ1, . . . , ψk), then C (ψ) := C (p)(C (ψ1), . . . ,C (ψk)).

◮ C is monotone, if for all p ∈ P , C (p) is monotone,

◮ C is additive, if for all p ∈ P , C (p) has the form
C (p) = cp + x1 + · · · + xk , cp ∈ N0.

Tree Parsing for Code Selection

From cost annotation C of grammar G to cost annotation
C ∗ of automaton AG .

◮ Assume an additive cost measure.
Costs can be described by a constant, i.e. C is a function from
P → N0.

◮ Define C ∗ as
◮ For τ = (s, a, s1 . . . sk) where s = a(s1, . . . , sk), C∗(τ) := 0.
◮ For τ = (X , a, s1 . . . sk), let C∗(τ) be the minimal costs of an

X -derivation tree for a(s1 . . . sk).

◮ Extend cost function of automaton to cost function for
computations.

Tree Parsing for Code Selection

Extracting Cheapest Derivations

Extract cheapest computations of A from computations of Ar as
follows:

1. Tabulate for each node 〈a,B〉 of a computation φ of the
powerset automaton P(Ar) the costs cq and the transitions dq

for all q ∈ B .

2. cq are the costs of a cheapest q-computation of a given tree t,
and
dq are the chosen transitions of A.

Tree Parsing for Code Selection

Integrated Cost Computation

◮ Assume that the set of cheapest X -derivations has differences
bounded by a constant (realistic).

◮ Integrate the (finitely many) cost differences into the states of
the subset automaton.

◮ Computed cost for state q is the difference between the
cheapest q-computation and the cheapest computation.

