Compiler Construction WS09/10

Exercise Sheet 3

Please hand in the solutions to the theoretical exercises until the beginning of the lecture next Wednesday 2009-11-11, 10:00. Please write the number of your tutorial group or the name of your tutor on the first sheet of your solution. Solutions submitted later will not be accepted.

Exercise 3.1: Item-PDAs Revisited (Points: 4+2)

Let the pushdown automaton $P=\left(\{a, b\},\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Delta, q_{0},\left\{q_{3}\right\}\right)$, where

$$
\Delta=\left\{\left(q_{0}, a, q_{0} q_{1}\right),\left(q_{0}, b, q_{0} q_{2}\right),\left(q_{0}, \#, q_{3}\right),\left(q_{1}, a, q_{1} q_{1}\right),\left(q_{1}, b, \epsilon\right),\left(q_{2}, a, \epsilon\right),\left(q_{2}, b, q_{2} q_{2}\right)\right\}
$$

and $\# \notin \Sigma$ symbolizes the end of the input word, be given.
Provide a context-free grammar that generates the language L accepted by P. If possible, provide also a regular expression for L. Otherwise provide sufficient arguments why this is not possible.

Exercise 3.2: Grammar Flow Analysis (Points: 3+6)

Let $G=\left(\left\{S^{\prime}, S, A, B, C, D, E, F, G, H, K, L\right\},\{a, b, c, d, e\}, P, S^{\prime}\right)$ be a given grammar with the set of productions P defined as:

$$
\begin{aligned}
S^{\prime} & \rightarrow S \\
S & \rightarrow B H \mid H A \\
A & \rightarrow S a B C \mid b c A \\
B & \rightarrow B a \mid b \\
C & \rightarrow d S \mid B d \\
D & \rightarrow d e L \\
E & \rightarrow F G \\
G & \rightarrow b \\
H & \rightarrow c A|A| b \\
K & \rightarrow b \\
L & \rightarrow d D
\end{aligned}
$$

1. Remove all unreachable and all non-productive rules.
2. Compute the sets $F I R S T_{1}(T)$ and $F O L L O W_{1}(T)$ for each nonterminal T of the reduced grammar.

You are to use the algorithms from the lecture and to provide for each subtask the corresponding system of equations.

Exercise 3.3: LL(k) (Points: 2+2+2+2)

A grammar is an $\operatorname{LL}(\mathrm{k})$-grammar for some $k \in \mathbb{N}$ if whenever there exist $u, x, y \in V_{T^{*}}$ with $k: x=k: y, Y \in V_{N}$ and $\alpha, \beta, \gamma \in\left(V_{T} \cup V_{N}\right)^{*}$ such that

then $\beta=\gamma$

A language L is an $\operatorname{LL}(\mathrm{k})$-language if there exists an $L L(k)$-grammar that generates L.

1. Prove that for each $k \in \mathbb{N}$ there exists a grammar which is $L L(k+1)$ but not $L L(k)$.
2. Prove that for each $k \in \mathbb{N}$ an $L L(k)$-grammar is an $L L(k+1)$-grammar.
3. Investigate the relationship between $L L(0)$-languages and regular languages.
4. A grammar is left-recursive if it has a production of the form $A \rightarrow A \mu$. Show that a left-recursive grammar is not $L L(k)$ for any k.
