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Abstract

Recently, in many important domains, high-level languages have become
the code representations with widest platform support surpassing any low-
level language in their area with respect to completeness and importance as
exchange format (e.g. OpenCL for data-parallel computing, GLSL/HLSL
for shader programs, JavaScript for the web). The code representations
of many actively-developed compiler frameworks [JVM,LLVM,FIRM] are
designed for generating low-level machine code. They do, however, offer a
broad range of language front-ends and program optimizations. In the scope
of this thesis, we implemented a backend that decompiles the intermediate
representation (IR) of the Low-Level Virtual Machine (LLVM) framework
into a high-level code representation. The approach taken preserves func-
tional program semantics and uses program transformations such as Con-
trolled Node Splitting to restructure arbitrary Control-Flow Graphs. We
implemented backends for both OpenCL and GLSL programs, that can de-
compile LLVM-Bitcode with some constraints (mostly due to unsupported
data-types). The final evaluation shows that the performance of decompiled
OpenCL matches that of reference OpenCL programs in most cases.
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Chapter 1

Introduction

Over the past years high-level languages have become the only vendor agnos-
tic program representation in some areas. For example in data-parallel pro-
gramming of graphics hardware, there is predominantly NVIDIA’s CUDA
and more recently OpenCL to name a few. However, only the latter is a
standardized language that is not bound to a specific vendor’s platform.
Also OpenCL is a high-level language and users are sought to program it
directly and not to generate it from some other code representation.
On the other hand there are several compiler frameworks, which internally
use code representations that in this picture are situated somewhere in be-
tween high-level languages and low-level machine code. They are designed
to be independent of specific source languages and target machines. How-
ever, in the usual flow of a compiler, program code is exclusively lowered,
i.e. it is only translated to representations that are closer to low-level target
machines. On their way down the pipeline, programs loose the structure
that was initially imposed on them by the source languages. These interme-
diate languages have several advantages. Conservatively, compilers translate
from a specific source language A into the target machine code B. With in-
termediate languages, however, language front-ends translate programs in
language A to the intermediate representation and there are back-ends for
translating that into the B-machine code. So it is only necessary to supple-
ment a generator towards or out of the representation to gain the support
for all the available source languages or target architectures.

This thesis addresses the issue of turning high-level languages into feasi-
ble targets for compiler frameworks. We finally achieved this by deploying
reverse compilation techniques and transformations that eliminate control-
flow patterns which are not expressible in the target language. Using the
developed decompilation algorithm, we implemented LLVM-Backends for
OpenCL and GLSL (The OpenGL Shading Language).
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1.1 Requirements

In the undertaking of this thesis, we aimed to comply to several require-
ments.

• The back-end should be restricted as little as possible to specific high-
level languages.
This was realized by separating the recovery of high-level control-flow
from the generation of target language code. However, the target
languages need to be imperative.

• Decompilation should never fail due to unsupported control-flow.
Our algorithm enforces structural attributes on the intermediate rep-
resentation. In contrast to forensic decompilers, the deployed trans-
formations only preserve the functional semantics of the program. We
conjecture that with our approach any Control-Flow Graph can be
restructured completely, i.e. without relying on unstructured control-
flow primitives (e.g. GOTO).

1.2 Outline

We begin with the introduction of the required terminology and related work
in the area of decompilation and graph restructuring. The concept section
elaborates on the characteristics of decompileable control-flow and trans-
formations for establishing them and concludes with the discussion of the
actual decompilation algorithm. We give an overview of the implementation
and the design choices that were made in the core decompiler, but also in
the implemented back-ends for OpenCL and GLSL. After a discussion of
the evaluation results of OpenCL programs generated from LLVM-bitcode
at different optimization levels, we finally conclude with an outlook on the
unresolved issues we will address in future work.
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Chapter 2

Background

2.1 Control-Flow Graph

A Control-Flow Graph (CFG) is a common model for representing the con-
trol flow in a function. It is a weakly connected directed graph where every
node is reachable from a designated entry node. That is, for every node
there is a path from the entry node to it.

A

C1 B1

C2

I2

E2I1

E1

B2

Figure 2.1: A Control-Flow Graph.

Common Terminology (from [1])

• A node x dominates a node y if every path from the entry node to y
passes through x (written x � y).
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• A node x post dominates a node y if every path from y to an exit
node passes through x (written x �p y).

• The Dominance Frontier of a node x (DF (x)) is the set of all
branches (u, v) in the CFG, where x dominates u, but x does not
dominate v.

• A node x immediately dominates a node y (written x = ID(y)), if
x is the last dominator of y on any path from the entry node to y that
is not equal to y.

In addition to common control-flow graph terminology we will introduce
the following extended definitions.

Extended Terminology

• a node x regulary dominates a node y in a context described by a
set of nodes C, (written x �C y), iff x dominates y in the CFG without
nodes in C.

• The regular Dominance Frontier of a node x (DFC(x)) in a context
described by a set of nodes C, is the set of all branches (u, v) in the
CFG, where x regulary dominates u, but x does not regulary dominate
v.

2.1.1 Loop Tree

S

A B

C

DE

Lε

{A,E} {B,C,D}

{C}

Figure 2.2: A CFG and its loop tree.

A loop tree identifies loops in the CFG and their relation to each other,
i.e. the nesting of loops. There is not a single definition of loop trees, but
several different methods of generating such a structure (in our case the
method used by LLVM).
Given a loop, we define its headers to be the nodes of the loop, that have
edges from nodes that are not in the loop going to them.
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2.1.2 Region

Given a set of nodes S we define a region at a node x to be the set
img(DFS(x)). We call elements of the set S the exits of the region.

2.2 Static Single Assignment Form

The intermediate representation used in the scope of this thesis uses Static
Single Assignment (SSA) form to model data flow. In SSA form [11], each
instruction that returns a value writes to its own designated variable. Also
a variable is only used in nodes that are dominated by the instruction that
assigns to it.
There is exactly one single static assignment for each variable in the entire
function. However, SSA form introduces an additional instruction. PHI-
nodes are instructions that have an operand variable for each predecessor
node of their parent node. If a PHI-instruction is executed, it returns the
value of the variable that corresponds to the predecessor node. By using
PHI-instructions as operands, instructions can select variables that were
defined in predecessor nodes dependening on the path that let to the current
node.

2.3 Node Splitting

A1 A2
. . . An

N

. . .B2B1 Bm

A1 A2
. . . An

N1 N2
. . . Nn

B1 B2
. . . Bm

Figure 2.3: effect of a node split.

Node splitting is an operation on CFGs that aims at modifying the control
flow while maintaining functional semantics. When a node is split it gets
cloned, such that there is a designated node for each incoming edge of the
split node (e.g. in fig. 2.3 one Ni for every Ai that branches to N). The
resulting nodes only have a single predecessor each. The outgoing edges are
copied with the split node and remain unchanged. Node Splitting is used for
both making a CFG reducible as well as restructuring acyclic control flow.
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2.4 LLVM

The Low-Level Virtual Machine (LLVM [8]) is a compiler framework that
uses its own intermediate representation (IR). This IR denotes functions as
CFGs and models data-flow (except for memory operations) in SSA form.
The nodes of a LLVM CFG will be referred to as Basic Blocks.

A Basic Block is a finite list of instructions where the last instruction is
always a terminator instruction, which denotes control flow in between
basic blocks. In the scope of this thesis, we will refer to the basic blocks as
nodes.
Table 2.1 shows the types of terminator instructions available in LLVM.

RETURN (x) exit node returning the value of x.
JMP, (Bnext) unconditional branch to node Bnext.

BRANCH (x, Btrue, Bfalse) 2-way conditional branch to Btrue if x is true,
otherwise to Bfalse.

SWITCH (x, B1, . . Bn) n-way conditional branching to Bi depending on
x.

Table 2.1: LLVM - Terminator Instruction types.
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Chapter 3

Related Work

3.1 Reverse Compilation

In her dissertation, Cifuentes [4] developed a decompiler pipeline that con-
verts x86 assembler to high-level C programs. The program is intended for
forensic purposes and so it preserves the original structure and semantics
of the decompiled program. This rules out program transformations such
as node splitting or the introduction of new variables which only respect
functional program semantics. Instead the decompiler resorts to GOTOs
for expressing unstructured control-flow.

Lichtblau [9] introduced a graph grammar for CFG restructuring. The
grammar will eventually contract any control-flow graph to a single node.
However this only holds if a branch from the CFG is removed whenever
the grammar lacks a fitting rule, i.e. a GOTO-statement is used instead.
The proposed graph grammar explicitly includes pre and post-checked loops.

The doctoral thesis of Van Emmerik [5] deals with the decompilation
of machine code programs using SSA form. Just as in compilers, the SSA
Form is acknowledged as a suitable intermediate data-flow representation
in decompilers. He discusses several SSA back-translation techniques and
evaluates them with respect to the readability of the resulting programs.
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3.2 Control-Flow Graph Restructuring

Williams and Ossher [12] discuss various methods for graph restructuring.
They mention a range of restructuring strategies from those that are based
on the introduction of auxiliary variables to strategies in which node splitting
is involved. Furthermore they detail the notion of unstructured control flow
by breaking it down to a set of properties of unstructured CFGs.
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Chapter 4

Concept

It is the job of a compiler front-end to translate a high-level program into the
intermediate representation. This is usually done by expressing high-level
control-flow primitives in the source language with a pattern of low-level
primitives. These patterns naturally constitute a graph grammar with one
rule for each high-level control-flow primitive. Therefore any CFG gener-
ated by such a front-end can be translated back into a high-level program
using pattern-matching rules. There exists at least one sequence of pattern
applications that will succeed.

In this section we will introduce the high-level control flow primitives that
the implemented decompilation algorithm recognizes. For arbitrary CFGs,
however, the high-level pattern matching process may fail due to several
reasons.

• The CFG could originate from a different front-end with an incom-
patible graph grammar. That is, the source language grammar may
be capable of producing CFGs, that the decompiler grammar can not
reproduce.

• Optimizations that modify the CFG may degrade any structure of the
control-flow introduced by compiler front-ends.

The pattern matching algorithm is an integral part of the decompiler
pipeline. But to achieve the operational stability required in real-life sce-
narios, it is necessary to create conditions under which the decompilation
succeeds reliably. To this end we firstly identify the structural properties
of decompile-able CFGs. Secondly, we discuss techniques for making the
loops of arbitrary CFGs decompile-able. Thirdly, we introduce the actual
decompilation process which resolves acyclic control-flow issues on the fly.
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4.1 Structured Control Flow

4.1.1 Structured High-Level Primitives

The structured tree representation that the high-level primitives constitute
is built on top of the underlying CFG. That is each primitive in the tree
attaches to a node of the CFG. Figure 4.1 shows the CFG of the n-body
test case and its high-level representation.

A

B

C

D

E

F

LIST

A
IF

LIST

B

LOOP

C
IF

D

E
IF

BREAK

F
RETURN

Figure 4.1: The “N-body“ CFG and its high-level representation.

A noteworthy exemption from common imperative languages is the lack
of a GOTO statement. The target languages (GLSL, OpenCL) do not sup-
port this primitive. Without a GOTO statement (or a similar construction)
it is not possible to model arbitrary branches within the program. So for
our purposes the CFG needs to be completely structured.
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List of high-level Primitives

This list contains all types of high-level primitives used by the back-end.
We left out pre and post-checked loops from the language. The provided
primitives are sufficient for expressing them.

• RETURN

End of function.

• BREAK

Branch to the parent loop exit.

• CONTINUE

Branch to the loop header.

• SEQ

Unconditional branch to the “next” node.

• LOOP

Infinite loop.

• IF

2-way conditional branch. Used for both “if” and “if..else” constructs.
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4.1.2 Properties of unstructured Control-Flow Graphs

A tree of high-level control-flow primitives translates to a CFG by mapping
each node to a graph pattern. These patterns are only capable of expressing
a subset of all possible CFGs. So for every CFG that cannot be produced
from a tree, pattern matching fails for any application order. If there exists
a tree for the CFG, it is called structured, if not it is called unstructured
respectively.
To define restructuring CFG transformations appropriately, we first need
to find a compact set of attributes that describe structured CFGs. The
reproducibility by the graph grammar is such a characterization. However
this definition does not yield a productive way for converting CFGs in a
decompileable form. Instead, legal CFGs should be described by a small set
of attributes with efficient transformations for establishing them. If that is
the case then applying the transformations in sequence on an arbitrary CFG
will convert it in a structured form. That is, if no subsequent transformation
affects already established CFG attributes.

A

B

C

D

Figure 4.2: Ir-
reducible control-
flow.

A

B

C

D

Figure 4.3: A CFG
with loop-crossing
branches.

A

B

CD

E F

Figure 4.4: Ab-
normal selection
paths.

• Irreducible Control-Flow (fig. 4.2)
There is no different way of entering a high-level loop then by pro-
ceeding with its body node (i.e. it is not possible to branch to some
more deeply nested node within the loop’s body). Therefore in any
structured CFG loops can only be entered at a single header block.
This property is called reducibility. Conversely, CFGs where some
loops have multiple headers are called irreducible. As there is only a
single header LOOP-primitive, the decompiler language can not express
irreducible control-flow.
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• Loop-crossing branches (fig. 4.3)
Consider acyclic sub CFGs that are completely contained in a loop
body. For the high-level primitives, the only way to model branches
out of this loop is by using either BREAK or RETURN nodes. BREAKs
are however only capable of describing branches to the loop exit block
and thus to the parent loop.

• Abnormal Selection Paths (fig. 4.4)
Consider acyclic sub CFGs of a function CFG which only contain nodes
within the same parent loop. Abnormal selection paths are essentially
patterns in these kind of sub CFGs that the decompiler language can
not express.

These are the CFG attributes we found to spoil the CFG decompilation
with the proposed language. We furthermore conjecture that the decompiler
language recognizes any CFG that exhibits neither properties.
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4.2 Loop Restructuring

4.2.1 Controlled Node Splitting

Node Splitting is an acknowledged technique for establishing control-flow re-
ducibility. In fact, randomly splitting nodes in a CFG will eventually yield a
reducible CFG. However, it is desirable to reduce the amount of copies in the
process. To this end common transformations do not apply node splitting
directly. Instead, they compute the limit graph which is again a CFG that
only contains nodes from the original CFG that participate in irreducible
control-flow (e.g. the limit graph of a reducible CFG is a single node). We
will denote the limit graph transformation as T . Now node splitting S is
only applied on nodes that are contained in the limit graph T (G) until a
single node is left. (for more details see e.g. Hecht et Al. [6])

As Corporaal and Janssen [7] have shown splitting some nodes in the
limit graph is not beneficial for making it reducible. Controlled Node Split-
ting (CNS) rules out these nodes and deploys a heuristics for candidate
nodes. We need to define the necessary terminology for discussing CNS
(from [7]):

Definition 1. A Loop Set in a CFG is a set of nodes of a cycle in the
CFG.

E.g. {B,C} is a loop set in fig. 4.2

A Shared External Dominator set (SED-set) is a subset of a loop-set L
with the properties that it has only elements that share the same immediate
dominator and the immediate dominator is not part of the loop-set L. The
SED-set of a loop-set L is defined as:

Definition 2. The SED-set of a loop-set L is defined as

SED-set(L) = {ni ∈ L | ID(ni) = d, d 6∈ L}

Definition 3. A Maximal Shared External Dominator set (MSED-set) K is
defined as:

SED-set K is maximal⇔6 ∃SED − set M,K ⊂M

Definition 4. Nodes in an SED-set of a flow graph can be classified into
three sets:

• Common Nodes (CN): Nodes that dominate other SED-set(s) and are
not reachable from the SED-set(s) they dominate.

• Reachable Common nodes (RC): Nodes that dominate other SED-
set(s) and are reachable from the SED-set(s) they dominate.

16



• Normal Nodes (NN): Nodes of an SED-set that are not classified in
one of the above classes. These nodes dominate no other SED-sets.

SCCs ← computeSCCs(G)
for all S ∈ SCCs do
R← S
for all h ∈ headers(S) do
D ← computeDominanceRegion(h, S)
R← R−D
if D − {h} = ∅ then

candidates ← candidates ∪{h}
else

candidates ← candidates ∪ recurse in (D − {h})
end if

end for
end for
if R 6= ∅ then

candidates ← candidates ∪ recurse in R
end if

Figure 4.5: algorithm for finding split candidates in a graph G.

Controlled Node Splitting only splits nodes that are in SED-sets and are
not RC-nodes. This gives a clear characterization for split candidates. It is
however necessary to find a method of identifying these kind of nodes. To
this end we use the algorithm stated in Figure 4.5. The algorithm starts
by computing the strongly-connected components (SCCs) of the CFG. For
each SCC the headers are those nodes that can be reached from outside of
the SCC. Clearly, these nodes are included in SED sets. For each header
h, the algorithm recurses on the set of nodes that the header dominates. If
there is a SED set and thus another SCC in that region then because all
these nodes are elements of the same SCC, h is reachable from a SED-set
it dominates. This makes it a RC-node (see Def. 4) and an unsuitable split
candidate. If however there is no SCC in the dominance region of h within
S then h is either a common or normal node (h could still dominate a SCC
that is not nested in S). Also it is necessary to inspect the part of the SCC
which is not dominated by any header (R). Similar to reducible loops it
could contain nested SCCs that again feature irreducible control flow.

17



S

A B

C D

Figure 4.6: irreducible graph.

S

A B

C D

S1

S2

Figure 4.7: detected SED-nodes.

Figure 4.7 shows an example run of the algorithm. The algorithm de-
tects the SED-nodes A,B,C and D. A and B are the headers of the SCC S1.
B dominates the SCC S2 which makes it a RC-node. The headers C and D
of the SCC S2 and A of SCC S1 respectively do not dominate anything and
thus they are split candidates.

Code-growth

In theory, node splitting may result in exponential code-growth. The
authors of the original paper [7] tested Controlled Node Splitting one some
real-world programs that feature irreducible control-flow. For their test
cases, they found the optimal splitting sequence to introduce in average
3.0% new nodes (relative to original number of nodes). Controlled Node
Splitting with a heuristic does perform close to the optimum (3.1% new
blocks).
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4.2.2 Loop Exit Enumeration

A

B

C

D

A

B

S (x)

C

D

x← 1

x← 0

x = 1

x = 0

Figure 4.8: CFG before and after loop exit enumeration.

The Loop Exit Enumeration pass traverses the loop tree from inner-most to
outer-most loop. For each processed loop it gathers all exit nodes of the loop
body, that is nodes which are reachable from the loop header but are not
contained in the loop. These exit nodes are enumerated (e.g. in fig. 4.2.2
the loop {A,B} exits to nodes C and D). If there is at most one exit block,
this loop is skipped as it is already single-exit. Alternatively a new block is
created, that all branches from the loop body to identified exit blocks get
redirected to. A new PHI-instruction in the joined exit node identifies the
exiting nodes with the number of the node they formerly branched to. In a
switch in the joined exit node this number then indexes to the corresponding
loop exit. To cope with the n-way switches, a subsequent transformation
converts them into 2-way conditionals.
As there now exists a single joined exit node instead of several, the loop
becomes single-exit. Also as processing a loop only introduces new exits to
its parent loop, the processing order from inner to outer most loop ensures
that the single-exit property of any nested loop is preserved.

Running Time

The number of created exit blocks is bound to be less than or equal to
the number of loops in the CFG because at most one additional block is
created for every loop.
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4.3 Decompilation Algorithms

After the loop-related control-flow has been restructured by CNS and Loop
Exit Enumeration, the acyclic portions of the CFG may still be unstruc-
tured. This task of restructuring can be phrased as follows: given an acyclic
CFG and a set of structured control-flow patterns, transform the CFG such
that the given patterns can reproduce it, while preserving functional seman-
tics. In many cases (structured CFGs) no transformation will be required at
all. However if the CFG is unstructured the transformation should degrade
it as little as possible.

4.3.1 Abstract Acyclic Control-Flow Primitive

P

S Entry node S with control-flow pattern P

. . .R1

h1

Rn

hn Child Regions

X Exit Node (optional)

Figure 4.9: Abstract high-level control-flow primitive.

In contemporary programming languages there is a wide range of acyclic
control-flow primitives. We do however recognize that many of them share
some structural properties. This yields the concept of the abstract acyclic
high-level primitive (see fig. 4.9)

• Single entry node
Similar to reducible loops a structured control-flow pattern has a des-
ignated entry node (node S). This node dominates the part of the
CFG which makes up the specific control-flow pattern of the primitive
(P ).

• Child Regions
The primitive branches to a fixed set of disjoined regions (regions R1

to Rn). The set of exits of a region R with entry node h is described
by img DFC′(h), where C ′ is some set of ignored exits. The primitive
region, starting at node S dominates all its child regions.
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• Single Exit Node
The joined set of exits (Exit Set) of all regions (R1 to Rn) contains at
most a single node. The notion of the exit of a region is described by
edges leaving the dominated region of its header. Therefore the rule
can be restated stated as:

|
n⋃
i

img(DFCi(hi))| ≤ 1

S

RC

C

X

S

RC

C

RA

A

X

Figure 4.10: IF and IF..ELSE control-flow pattern.

The implementation at hand supports IF and IF..ELSE primitives (pat-
terns seen in fig. 4.10). Note, that the IF..ELSE pattern will match any
2-way conditional in the graph. The resulting regions may however not sat-
isfy the exit node property.

The general concept of an abstract high-level primitive applies to e.g.
Short-Circuit-IFs as well (also note the similarity to loop related control-
flow patterns). To add high-level Switches the “Single Exit Node”-rule has
to be relaxed because regions would correspond to labels in the switch and
control-flow may cross labels (i.e. if there is no BREAK in front of labels).
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4.3.2 Decompilation Algorithm for structured CFGs

The algorithm starts on the function’s body region. It checks which sup-
ported primitive can generate the control-flow pattern at its entry node.
Eventually, it will find a matching pattern and extract the entry nodes to
the child regions of the control-flow primitive. The algorithm then descends
recursively on the child regions and extracts their high-level node.

Definition of Regions within the Extraction

A region in a CFG is defined by its entry node and a set of anticipated
exit nodes. If the regions resides in a loop, these exits include the header and
the exit node of that loop. This is because within that loop branches to the
header or to the outside can be expressed at any point using CONTINUE
or BREAK (at this point, loops are single-entry and single-exit).

Additionally, there is a natural notion of an exit node. E.g. an execution of
the body region may leave an IF-primitive to a succeeding primitive. Also,
the body region of a LOOP always exits to the loop header as this primitive
loops infinitely.
The context information required in order to define the region at a node and
to identify nested child loops is given by:

• The anticipated exit node of the region

• The parent loop

• Parent loop header (continue node)

• Parent loop exit (break node)

The extraction context of the function’s entry node has all its fields
set to null. That is, it starts on the function body and thus BREAK or
CONTINUE is not possible. The definition of regions of the abstract acyclic
control-flow primitive is parameterized by a set of anticipated exit nodes.
For the decompilation algorithm, this set contains all defined nodes of the
extraction context, i.e. fields that are not set to null.
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By its definition structured Control-Flow Graphs can be decompiled
without transforming them. That is, there is a high-level primitive that
matches the control-flow pattern at the entry node of a region. Also, the
resulting child regions satisfy the single exit node property. Therefore, the
parent high-level primitive can be built from its recursively decompiled child
nodes.
A region may, however, contain a sequence of primitives, such that each
primitive exits on the entry node of its successor. Necessarily the exit sets
of listed primitive, but the last one, contain a single exit node.

Decompilation of Primitive Sequences

When a region is decompiled the algorithm does not only parse the primitive
at the entry node. Instead it greedily parses primitives at the returned exit
node until either no exit node is returned or the returned exit node is the
exit node of the extraction context. The extraction context of that is used
unchanged for extracting the listed primitives. If the obtained sequence of
primitives is longer than one, the decompiler constructs a LIST node from
it. Otherwise the sole parsed primitive is returned.

Decompilation of structured Loops

A

X

Figure 4.11: simple
loop.

A

exit node (A) BREAK (X)

Figure 4.12: loop body branches within the ex-
traction context.

The entry node may be the header of a nested loop and therefore any control-
flow at that node occurs in the loop body. Consequently even if an acyclic
primitive matches the immediate control-flow pattern at the entry node, the
loop takes precedence. The extraction context for the loop body is based on
the parent context with the following changes:

• Exit node
The exit node is equivalent to the header of the loop.
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• Continue node
Also the loop header.

• Break node
The unique exit node of the loop.

• Parent loop
The detected loop.

Note, that there is a peculiar behavior in the treatment of loops. If the
decompiler recursed on the loop body without taking into account that it
just entered a loop, then it would detect that the entry node was equiva-
lent to the exit node within the extraction context, so it would just return
CONTINUE. To mend this issue the decompiler temporarily disables this code
path. Also the entry node is equivalent to the exit node. This is, how-
ever, unproblematic because the parser enforces that at least one primitive
is parsed.

Decompilation of 2-way Nodes

A

B

C

D

E

Figure 4.13: non-trivial IF-case.

The current implementation features two primitives for modeling 2-way
control-flow patterns, the IF and IF..ELSE primitive. The algorithm has to
choose among them and, in the IF case, needs to identify the successor node
which is the entry node to the child region of the primitive. We ignore the
branching condition at this stage because branch targets can be swapped by
negating the condition and so both successors could potentially be used as
body regions for the IF-primitive.
A 2-way node can be described by an IF-primitive, if
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• Trivial case (see e.g. fig. 4.12)
One of the branches leads to the exit node of the extraction context.
The non-trivial successor is the entry node to the body without chang-
ing the extraction context.

• Join case (e.g. fig. 4.13)
None of the branches is trivial and one node is an exit of the region of
the other. The node which is not an exit makes the entry node to the
body. The other is set as exit node in the extraction context.

Note, that this characterization is not exhaustive, e.g. if none of the
exits is trivial and the exit set is empty (that is the child regions only leave
using RETURN,BREAK or CONTINUE), both IF and IF..ELSE could express the
control-flow appropriately (in fact, then there is no control-flow between the
regions).

The decompiler creates an IF..ELSE if it will not use an IF-primitive.
The extraction context for both child regions is set to be the single exit node
of the primitive, if any.

Remaining Cases

• BREAK / CONTINUE

Created if the processed node equals the corresponding nodes in the
extraction context.

• RETURN

Created for nodes without successor.

• Unconditional Terminator
If the decompiler does not enter a loop with this entry node and also
that node has only a single successor, then the node is encapsulated
in a SEQ primitive.
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4.3.3 Example: OpenCL - NBody kernel

In the following, we discuss a run of our algorithm on the “n-Body“ CFG
seen in Figure 4.1. This CFG is taken from an actual test case that we will
detail in the Implementation section. On the left side of the CFG, we show
the extraction context as a table. In the middle, we depict the subgraph
as defined by the extraction context and the entry node of the region. The
entry node is printed in bold. On the right hand side, we show a table with
the extraction context for the child regions. When talking about the dom-
inance frontier, we always mean the S-regular dominance frontier, where S
is the set of all defined nodes in the extraction context.

Initial state

Bcontinue

Bbreak

Bexit

Loop
(a) extractor context

A

B

C

D

E

F

(b) initial CFG.

Bcontinue

Bbreak

Bexit F

Loop
(c) extractor context for
child region at B.

Figure 4.14: IF matching at node A.

We begin with the initial state. The extraction context is empty (Ta-
ble 4.14(a)) and the algorithm start on the function’s entry node A. The
region entails the entire CFG (see Figure 4.14(b)). The algorithm detects
an IF-primitive because the successor node F is element of the dominance
frontier of B. Thus we enter the child region at node B. The extraction
context at the child region (Table 4.14(c)) is the same as the parent’s except
for the exit node which is set to node F .
The next iteration will parse an SEQ-primitive at node B because this node
branches unconditionally to node C. So a primitive sequence is parsed with
the region at node C being the next element of the LIST-primitive.
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Parsing of node C

Bcontinue

Bbreak

Bexit F

Loop
(a) extractor contex at node
C.

C

D

E

F
exit

(b) region at node C.

Bcontinue C

Bbreak F

Bexit C

Loop {C,D,E}
(c) loop-body extractor con-
text at C.

Figure 4.15: LOOP matching at node C.

When the node C is parsed, the algorithm will detect that node C is the
header of the loop. So the algorithm proceeds recursively on the loop body.
It sets the extraction context’s break node to the unique exit node of the
loop. Both the continue node and the exit node are set to the loop’s header
node which results in the extraction context seen in Table 4.17(a).

Parsing of the loop body at node C

Bcontinue C

Bbreak F

Bexit C

Loop {C,D,E}
(a) extractor context at
node C.

C

D

E

exit

exit

(b) loop-body region at node
C.

Bcontinue C

Bbreak F

Bexit E

Loop {C,D,E}
(c) extractor context for
body D.

Figure 4.16: IF matching at node C.

The successor node E of node F is the exit node in the extraction con-
text, so the trivial case IF-parsing occurs. The body node E is parsed with
the same extraction context. Note, that according to the extraction context
(Table 4.16(a)) the continue node is being parsed C. However, the algorithm
does not parse CONTINUE-nodes if it parses the entry node of the loop body.
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Parsing of node E

Bcontinue C

Bbreak F

Bexit C

Loop {C,D,E}
(a) extractor context at E.

E

F

C

break

exit

(b) region at node E.

Bcontinue C

Bbreak F

Bexit C

Loop {C,D,E}
(c) child extractor context.

Figure 4.17: IF matching at node E.

Finally the algorithm parses node E. Again the trivial case of IF-
primitive parsing occurs because node C is an exit node in the extraction
context. Now if the body node F is parsed, the algorithm detects that F is
the break node in the current context.
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4.3.4 Generalized Decompilation Algorithm for CFGs with
structured Loops

We already discussed techniques for restructuring the loops of arbitrary
CFGs. In order to be able to decompile arbitrary control-flow, we will now
extend the aforementioned decompilation algorithm on CFGs with struc-
tured Loops. Note, that if the extraction algorithm will find a matching
primitive even when processing unstructured portions of the CFG. This is
because there is a pattern for every kind of terminator instruction in the
graph (unconditional branch, 2-way conditional).
The resulting child regions, however, could violate the single exit node prop-
erty of abstract high-level primitives. In the extended algorithm, whenever
the decompiler detects invalid child regions, the control-flow graph is trans-
formed using a so-called solver procedure.

Node-Splitting based Solver Procedure

A

B

CD

E F

Figure 4.18: Unstructured
CFG.

C

E

Figure 4.19: Join Graph.

A

B

D C

E’

C’

F F’E

Figure 4.20: split sequence E, C, F .

A

B

C

F

C’

F’

D

E

Figure 4.21: split se-
quence C, F .
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The algorithm deploys a solver procedure, whenever a high-level prim-
itive matches the control-flow at its entry node, but the resulting regions
violate the single exit property. In other words the exit set of the child
regions is greater than one (bold nodes in fig. 4.18).

4.3.5 Node Splitting Solver Procedure

In the following argumentation, we assume that in the example CFG (fig.
4.18 an IF..ELSE is detected with child regions at the nodes B and C.
The parser does not fix an exit node and so the solver procedure may pro-
duce an arbitrary valid exit set. When the exit set has reached size one, it
picks the single node of the set and makes it the exit node of all child regions.

If a node in the exit set is split, the regions will dominate their respective
copy of this node and instead the node’s successors will enter the set. Split-
ting arbitrary nodes from the exit set is, however, not a viable strategy. As
Figure 4.20 depicts, splitting node E of the exit set, causes an unnecessary
node split.

An non-empty exit set and the pairwise reachability of its nodes define
an acyclic graph, the Join Graph (seen in fig. 4.19). We realize the exit
set as a list with unique elements and an ordering constraint: if node B is
reachable from node A, B is placed after A. If a node is split, its successors
are put at the front of the list and rinse down behind the last node that
reaches them.
The algorithm proceeds by iteratively splitting the front node of the list until
it has at most a single element. This ensures, that firstly only unreachable
elements of the join graph are split. Secondly by putting split successors at
the front, confluent nodes in the initial Join Graph are preserved.

This behavior is crucial for minimizing the number of node splits. Con-
sider all terminating paths within the parent region that start at the initial
exit set. Assume there is a node (the exit node) for which the following
holds. If none of these paths contain nodes that can be reached from the
exit node, then the algorithm will eventually terminate on the exit set, which
only contains that exit node.
This is true because, if there was a node that is reachable from both a pre-
decessor of the exit node and a node of the initial exit set, then the exit
node will be split first. Conversely, if there exist paths that terminate with-
out passing through the exit node, during all iterations their nodes will be
placed in front of the exit node. Therefore finally a join graph is reached,
where all paths pass through the exit node. At this point, the exit node be-
comes a common post-dominator in the current join graph. During the next
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iterations nodes on all paths to that common post-dominator will be split.
So eventually the exit set of the final iteration will only contain the exit node.

We ignored loops in the description of the solver procedure. The algorithm,
however, extends to graphs with structured loops. Whenever a node of the
join graph that is the header of a loop is to be split, the entire loop is split
instead.

4.3.6 The Case of the Mandatory Exit Node

For the sake of the argument we assumed, that the algorithm would detect
an IF..ELSE primitive in the example CFG (fig. 4.18), when the algorithm
would really match an IF primitive with mandatory exit node C and a
single child region at node B. In this case, the algorithm uses a slight
variation of the general solver algorithm. Firstly, the mandatory exit node
gets removed from the exit set, i.e. the stack, before each iteration. Secondly,
the algorithm iterates until the exit set is empty (e.g. fig. 4.22).

A

B C

D

E

E’ F

Figure 4.22: Resolved IF matching at the entry node A.
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Chapter 5

Implementation

We implemented the decompiler pipeline in C++ based on LLVM 2.8. All
transformations and the extraction were realized as passes within the LLVM
pass infrastructure. The target language back-ends for OpenCL and GLSL
share the entire pipeline up to the serialization pass. However, even that
stage is not tied to a target language. The serialization pass only interacts
through interfaces with target specific parts of the program.

5.1 Decompilation Pipeline Overview

CFG CNS Loop Exit Enumeration Loop Structuring

Extraction Decompilation

high-level
program Serialization Preparation Translation

Figure 5.1: LLVM-Pass sequence of the decompiler.

The translation pipeline serializes a LLVM Bitcode module into a textual
representation. Initially, the loop simplify pass of LLVM is run. This is
necessary, so we can use the Loop Tree implementation of LLVM. There-
fore, the decompiled CFGs differ slightly from those that were input. We
describe the passes of the pipeline in the next sections.
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5.2 Controlled Node Splitting Pass

As has been discussed in the concept section, our algorithm uses an imple-
mentation of Controlled Node Splitting to make CFGs reducible. The only
graph transformations CNS applies to the actual CFG is node splitting and
computing the limit graph. Therefore it is desirable to operate on a graph
representation that supports these transformation efficiently. Furthermore
the implementation should not only support heuristic driven node splitting,
but also should allow finding the optimal split sequence. For big functions
this is a computationally intensive task, which involves keeping numerous
CFGs in memory at once.

Internal Graph Representation

Controlled Node Splitting only affects the control-flow of the function that is
described by its Control-Flow Graph. The function representation of LLVM,
however, also stores the contents, i.e. the instructions, with the function’s
CFG. Also, whenever a basic block is copied, by necessity all instructions
are cloned along with it.

All of this inflicts an unnecessary computational burden when applying
Controlled Node Splitting to a function. Therefore we decided to use out
own data-structure that abstracts from basic blocks to nodes with adjacency
lists. All operations, in particular node splitting, are then conducted on
this internal representation. To be able to translate the CFG back to the
representation of LLVM all nodes are labeled with a pointer to the basic
block they represent. When cloning a node, its label is duplicated along
with it.
Firstly, all blocks in the CFG are enumerated. The assigned index points into
an array where a pointer to the original basic block is kept. All methods
of the graph class take a bitmask for masking out nodes by index. This
feature is frequently used to define the sub graph during the traversal of
nested SCCs.

5.3 Loop Exit Enumeration Pass

The loop exit enumeration pass operates on the LLVM loop tree. After all
exit nodes are collected a new basic block only containing a PHI instruction
and a switch instruction is created. This basic block becomes the joined exit
block of the loop. Note that the extraction framework does not implement
switch instructions. The unswitch pass provided by LLVM is invoked which
transforms all switches to an equivalent cascade of branches.
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5.4 Extraction Pass

The extraction pass implements the generalized decompilation algorithm
(see Section 4.3.4). It extracts trees of high-level primitives from the func-
tions’ CFGs. In the following, we will discuss the general implementation of
the algorithm and the design choices that we made.

Extractor
<<interface>>
SolverProcedure

<<interface>>
PrimitiveParser

<<interface>>
BuilderSession

tryParse(..)

build(..)

getRegions(..)

getSolver(..)

solve(..)

Figure 5.2: Extraction Pass class interactions.

Figure 5.2 visualizes the main classes and their interactions during the
extraction of the high-level primitives. The Extractor class is a LLVM
ModulePass and controls the entire process, i.e. it contains the main extrac-
tion function. The PrimitiveParser and BuilderSession interfaces divide
functionality that is specific to certain high-level primitive types from the
general extraction procedure. Each implementation of the PrimitiveParser-
interface is responsible for detecting the pattern of specific high-level prim-
itives. If a PrimitiveParser-object accepts the control-flow pattern at a
node it sets up a BuilderSession-object. This object defines the child re-
gions for this matching and a SolverProcedure. Also it is used to create the
detected high-level primitive when all child regions have been decompiled.

5.4.1 Main Extraction Function

The main extraction function is given an entry node and an extraction con-
text. It returns the extracted high-level primitive and the exit node of that
primitive (if any).

1. Initially the function checks whether the entry node is a continue node
or break node in the current extraction context. In that case, it returns
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either a CONTINUE or BREAK primitive.

2. The tryParse method is iteratively called on a sequence of PrimitiveParser
objects until the first returns a BuilderSession object.

3. The Extractor gets the solver procedure and the child regions of the
matched primitive from the BuilderSession object.

4. The NodeSplitting procedure is invoked and enforces the single exit
node property on the selected child regions.

5. The extractor recurses on the child regions’ entry nodes and obtains
one high-level primitive for each of them.

6. The {build} method of the BuilderSession object finally constructs
a high-level primitive from the extracted child primitives.

5.4.2 Primitive Parsers

Currently, there exist two implementations of the PrimitiveParser-interface.
We list them in the same sequence as the extraction function calls the
tryParse-method on them.

1. LoopParser
The LoopParser detects structured loops in the CFG. Its tryParse

method returns a BuilderSession-object which constructs LOOP-primitives
from them. If the entry node is the header of a loop that is not re-
ducible or has multiple exit nodes tryParse aborts the decompilation.

2. IfParser
If the IfParser is invoked on a node with a 2-way terminator it chooses
to extract either a IF or IF..ELSE primitive from it. Depending on
its choice, it returns an IfBuilder or IfElseBuilder that will cre-
ate the intended primitive after the control-flow was restructured. In
both cases, getSolver returns the SolverProcedure-implementation
of the node splitting solver procedure.
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5.5 Preparation Pass

This minor pass assures that the names of all instructions and types in the
module’s type symbol table are valid with respect to the target language.
Instructions are named using a generic pattern (the function name, followed
by the index of the node and the index of the instruction in that node).

. . .
%compute 2 2 = mul i32 %compute 0 2, %compute 2 0
%compute 2 3 = add i32 %compute 0 0, %compute 2 2
. . .

Figure 5.3: Named instructions in the n-Body test case.
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5.6 Serialization Pass

The serialization pass takes the high-level representation of a LLVM-Module
and translates it to a textual representation. It traverses the high-level trees
of the module and issues a series of write-requests for the contents of the
primitives and the primitives themselves. The implementation offers an in-
terface for concrete receivers of these write-requests (SyntaxWriter). A
given Backend object acts as a factory for creating the receiving objects. So
it ultimately determines what the resulting textual representation will look
like.

Extractor

Serializer
<<interface>>

Backend

<<interface>>
ModuleInfo

<<interface>>
SyntaxWriter

bindGlobals(..)

writeX(..)

createXWriter(..)

implements(..)

getASTs()

Figure 5.4: Serializer Pass class interactions.

The Serializer pass takes the high-level representation of a LLVM-
Module from the Extractor. It gets an initial SyntaxWriter object from
the target language specific Backend implementation and uses it to spill all
symbol declarations (global variables, functions, named types) of that mod-
ule. During this process, the implements method of the Backend is queried
for each global symbol. If the method returns true, then the Serializer

will skip this function. After the module prologue has been written, the
Extractor proceeds by iteratively serializing the body nodes of all func-
tions in the module. This is realized with the visitor pattern, i.e. the
Extractor traverses the function’s high-level representation and calls ap-
propriate writeX(..) methods on the current SyntaxWriter object.
The Backend implementation acts as a factory for three different kinds of
SyntaxWriter objects. This is necessary, so e.g. the implementation can
treat special functions in the module differently. Also this mechanism is
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Figure 5.5:

used in both backends for the syntactical grouping of statement lists into
block statements.

5.6.1 Syntax Writers

Table 5.1 categorizes the major writeX(..) methods of the SyntaxWriter

interface. The Serializer calls these methods during its traversal of the
LLVM-Module.

Module scope

writeFunctionDeclaration(llvm::Function * func, ..)
writeFunctionHeader(llvm::Function * func, ..)

High-level primitives

writeIf(const llvm::Value * condition, bool negateCondition, ..)
writeElse()
writeLoopContinue()
writeLoopBreak()
writeInfiniteLoopBegin()
writeInfiniteLoopEnd()
writeReturnInst(llvm::ReturnInst * retInst, ..)

Instructions

writeInstruction(llvm::Instruction * inst, ..)
writeAssign(..)

Function scope

writeVariableDeclaration(..)
writeFunctionPrologue(llvm::Function * func, ..)

Table 5.1: writeX - methods of the SyntaxWriter interface.

Stack of Syntax Writers

Three different kinds of factory methods in the Backend are used for creat-
ing SyntaxWriter. The SyntaxWriter objects are stacked on top of each
other to represent the nesting of scopes during serialization.

createModuleWriter(ModuleInfo & modInfo, ..);
createFunctionWriter(SyntaxWriter * modWriter, llvm::Function * func);
createBlockWriter(SyntaxWriter * writer);

Table 5.2: createXWriter - methods of the Backend interface.
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Module scope writer

An initial SyntaxWriter-object is created using the createModuleWriter-
method of the backend. This object persists until the serialization of the
module has finished. Its constructur can be used to write global symbol
declarations (see fig. 5.6).

void compute(
global float4*,
global float4*,

int,
float,
float,

local float4*,
global float4*,
global float4*);

Figure 5.6: Forward declaration written at module scope (n-Body example).

Function scope writer

When the Serializer encounters a function it obtains a writer with
the createFunctionWriter-method. This object is used for writing the
function header. The function body is then serialized with a writer obtained
from createBlockWriter. The call sequence can be seen in Figure 5.7.

function call generated syntax

FunctionWriter::
→ writeFunctionHeader(..) kernel compute (..)

<< constructor >> BlockWriter {
BlockWriter::
→ writeFunctionPrologue() float4 compute 4 3;

float4 compute 4 4;
. . .
float4 compute 7 0 in;
float4 compute 7 0;

. . function contents . .

<< desctructor >> BlockWriter }

Figure 5.7: serialization of a function (n-Body example).

While traversing the function’s high-level representation the serialization
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pass pushes block writers on a stack to open a new syntactical scopes. The
top writer always writes to a location that is nested within all the scopes on
the stack. Finally, when the module writer gets destroyed or if the writer
stack is empty, the module is completely serialized. However, by explicitly
requiring the notions of module, function and block scopes the serialization
API requires the target languages to have a certain structure.

5.6.2 ModuleInfo class

Generally the ModuleInfo implementation is responsible for storing addi-
tional information of a module that is specific to the target language back-
end. E.g. both provided back-ends use them to identify functions that
require special treatment during the serialization (kernel functions / shader
stages, respectively). Also they are queried to obtain identifier bindings for
global symbols in the module.

5.6.3 Identifier Scopes & Bindings

Identifier scopes bind LLVM value objects to strings. They are passed with
every writeX call on the SyntaxWriter objects so that the methods can
look up the identifiers of operand values and destination variables. In the
serialized programs there is exactly two kinds of identifier scopes: the global
scope of the module and per-function scopes. The global identifier scope is
created once for each module. It binds all global variables in the module to
identifiers.
The serializer only outputs local declarations when writing the function pro-
logue. So there are no nested identifier scopes within a function. Also, there
is exactly one identifier scope for each function.

5.6.4 PHI-Node Elimination

We use a näıve algorithm for eliminating PHI-nodes during program se-
rialization. There are two identifiers for each PHI-node in the program.
Whenever a branch is taken, we create an assignment to the input identifier
(x_in) for every PHI-node in the target node. When the target node it-
self is serialized, we iterate over all its PHI-nodes and create an assignment
from the input identifier to the identifier bound to the PHI-node (x = x_in).

5.6.5 Example: n-Body Kernel

The figures below all show the same section of the n-Body test program dur-
ing different stages of the decompilation. The listing in figure 5.8 is taken
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from the initial bitcode file. Figure 5.9 shows its high-level tree represen-
tation. The final product can be seen in figure 5.10 (for complete listings,
refer to appendix A).

f o r . body29 :
%compute 4 0 =

phi i32
[ %compute 4 26 , %f o r . body29 ] ,
[ %compute 3 0 , %f o r . body29 . preheader ]

%compute 4 1 =
phi <4 x f l o a t>

[ %compute 4 25 , %f o r . body29 ] ,
[ %compute 2 1 , %f o r . body29 . preheader ]

[ . . . ]

br i 1 %compute 4 27 , l a b e l %f o r . end . l oopex i t , l a b e l %f o r . body29

f o r . end . l o op ex i t :
%compute 5 0 =

phi <4 x f l o a t>
[ %compute 4 25 , %f o r . body29 ]

br l a b e l %f o r . end

Figure 5.8: Excerpt from the n-Body bitcode.

LOOP

for.body29

IF

BREAK

Figure 5.9: Part of the decom-
piled n-Body tree.

while ( true )
{

compute 4 0 = compute 4 0 in ;
compute 4 1 = compute 4 1 in ;

[ . . ]

i f ( compute 4 27 )
{

compute 5 0 in = compute 4 25 ;
compute 5 0 in = compute 4 25 ;
break ;

}
else
{

compute 4 0 in = compute 4 26 ;
compute 4 1 in = compute 4 25 ;

}
}

Figure 5.10: Generated OpenCL code.
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5.7 Back-ends

5.7.1 OpenCL Back-end

The OpenCL programming language is syntactically very close to C. Note-
worthy derivations from plain C include the notion of different memory
spaces, vector types, annotations for kernel functions and additional opaque
data types. Our implementation adheres to the OpenCL 1.0 specification [2].

Engineering Details

The memory hierarchy OpenCL operates on was mapped to designated ad-
dress spaces in LLVM. The module info class essentially only contains meth-
ods for identifying kernel functions and stores the output stream. The back-
end’s factory methods are rudimentary wrappers for creating new instances
of one of the tree writer classes. Leaving the embracing prologue and final-
ization outputs aside all writers share the same behavior, except the function
writer that accounts for kernel functions by case distinction when asked to
emit a function header.
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Primitive Mappings

LLVM Type OpenCL Type Remarks

float,i32,i16,i8,i1 float, int, short, char, bool

<I x float> floatI I ∈ {2, .., 16}
<I x i1> intI no vector of

boolean values
<I x i8> charI
<I x i16> shortI
<I x i32> intI

T addrspace(1)* global S(T ) * T must not con-
tain a pointer
type

T addrspace(2)* constant S(T ) *
T addrspace(3)* local S(T ) *
T * S(T ) *

T addrspace(100)* S(T) opaque type
wrapper space

{ T1, .. , Tn } struct
{ DT1( x1 ); .. DTn( xn ); }

[n x T] S(T ) [n]

opaque event t, sampler t, image2d t,
image3d t

identified by their
OpenCL name

Figure 5.11: OpenCL Type mappings S(T ) (DT (x) denotes declarations).

The particular address space indices where chosen to match those of the
LLVM OpenCL front-end that comes with the AMD Stream SDK v2.2. This
is except the special address space 100 which in the following will be referred
to as the no-pointer address space. Pointer values in that address space will
be treated as being the objects they point to. Additionally, memory oper-
ations on these pointer values are undefined. This enables e.g. declaring
local opaque values and passing them by value.
This way types of the target language that are unknown to the LLVM type
system can be represented in bitcode. Alternatively, they could have been
associated with equivalently structured LLVM types. For example an LLVM
struct of 16 floats could get reinterpreted as a four by four matrix. There
is rationale against this. Firstly, providing a direct mapping clarifies what
target language code will be generated when using a specific type in LLVM.
Secondly, only types that are not likely to be subject of structural decompo-
sition will be mapped to target language types (e.g. the matrix example).
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5.7.2 GLSL Backend

@color = addrspace(2) global <4 x float> zeroinitializer , align 16
@outFragment = addrspace(4) global <4 x float> zeroinitializer, align 16
@result = global i32 0, align 4

define zeroext i1 @shadeFragment
(<4 x float> %fragVertex, <4 x float> %fragNormal, i32 %inA, i32 %inB)
nounwind noinline
{
entry:

%tmp = load <4 x float> addrspace(2)∗ @color
store <4 x float> %tmp, <4 x float> addrspace(4)∗ @outFragment
%add = add i32 %inB, %inA
store i32 %add, i32∗ @result
ret i1 true
}

define void @shadeVertex
(<4 x float> %normal, <4 x float> %vertex, i32 %vertIn, i32 %otherIn)
{
entry:

%call = tail call <4 x float> @flat f4(<4 x float> %vertex)
%call2 = tail call <4 x float> @smooth f4(<4 x float> %normal)
%call4 = tail call i32 @flat u(i32 %vertIn)
%call6 = tail call i32 @flat u(i32 %otherIn)
%call7 = tail call zeroext i1 @shadeFragment

(<4 x float> %call, <4 x float> %call2, i32 %call4, i32 %call6)
ret void
}

declare <4 x float> @flat f4(<4 x float>)

declare <4 x float> @smooth f4(<4 x float>)

Figure 5.12: Basic OpenGL shader bitcode

The OpenGL Shading Language is also syntactically a C-based language.
The data-flow between processing stages does, however, lack a counter part
in the LLVM Bitcode. Additional complications include the existence of
multiple output streams, where there is one for each stage. The design
choices for coping with these challenges where made with future extendibility
in mind. Our back-end implements parts of the OpenGL Shading Language
v3.3 [3].

Engineering Details

Bitcode structure of OpenGL Shader Programs

In the following, we will discuss the basic structural attributes of OpenGL
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shader programs specified in LLVM Bitcode. (example seen in fig. 5.12, cap-
ital case macros represent e.g. address space annotations).

With regard to the OpenGL rasterization pipeline a LLVM module can
implement single processing stages up to functions for the entire pipeline.
To enforce that source Bitcode for the GLSL Back-end defines processing
stages (shader types) at most once, each gets identified with a reserved func-
tion name (shadeFragment,shadeVertex).

A fragment shader can terminate execution by accepting or discarding
its result (return discard statements in GLSL). There is no such thing as
a discarding terminator in LLVM-Bitcode. So instead the returned value is
reinterpret as either accepting the fragment (true → return) or discarding
it (false → discard).

In the OpenGL rasterization pipeline there is data-flow between consecu-
tive processing stages. E.g. the vertex shader operates on a per-vertex basis
and can store custom data at each vertex. These values are interpolated over
the geometry. Whenever the fragment shader is invoked on a surface sample
of the geometry it has access to the interpolated values at that location. We
represent this passing of data between stages with function calls. Special
intrinsic functions define the interpolation behavior for each value. If a value
is passed directly, the interpolant is also unspecified in the resulting GLSL
program and default interpolation is assumed.

Processing Stage-aware Serialization

In applications, OpenGL Shader Programs are usually built from a set of
shader source files, which are compiled separately and then linked together.
There is a shader source file for each processing stage. Moreover it is not
possible to specify more than one processing stage in a single source file. In
our Bitcode representation this is, however, possible. So the writers have
to unravel the processing stages of a module into their designated output
streams, such that the resulting shader files will make the correct program,
when linked together. This involves for example writing shared symbols to
all shader files that use them and serializing shader functions only into their
designated stream.

Supported Processing Stages

For this thesis, support for vertex and fragment shaders has been im-
plemented. The overall framework is, however, extensible for additional
processing stages such as geometry or tessellation shaders. Their imple-
mentation requires new reserved function names and target streams in the
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module info class. Also processing stages may bring a new set of intrinsics
with them.

Primitive Mappings

LLVM Type GLSL Type Remarks

float,i32,i16,i8,i1 float, int, short, char, bool

<I x float> vecI I ∈ {2, 3, 4}
<I x i1> boolI
<I x i8> charI
<I x i16> shortI
<I x i32> intI

T addrspace(1)* uniform S(T ); T must be global.
T addrspace(3)* out S(T ); fragment shader

output.

T addrspace(100)* S(T) opaque type
wrapper space

{ T1, .. , Tn } struct
{ DT1( x1 ); .. DTn( xn ); }

[n x T] S(T ) [n]

opaque matixj i, j ∈ {2, 3, 4}
opaque sampler1D, sampler1DArray

Figure 5.13: GLSL Type mappings S(T ) (DT (x) denotes declarations).
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5.8 Limitations

5.8.1 General Limitations

Any language feature of LLVM that is not natively supported in OpenCL
or GLSL will either abort the decompilation process or produce invalid pro-
grams with respect to the specification. Common aborting features include
include:

• unsupported types (strings, function pointers, invalid sized vectors).

• unknown address spaces.

• dynamic memory allocation.

• dynamic vector element access (ExtractElementInst).

The following features will be decompiled, but the resulting programs
may not compile:

• structs (container types) with pointer type elements.

• recursive function calls.

5.8.2 OpenCL-specific Limitations

Like all other OpenCL specific intrinsics memory barriers are realized as
function calls in bitcode. Node splitting can duplicate such calls and two
paths that passed through the same block before, may not join in that node
afterwards.

5.8.3 GLSL-specific Limitations

The OpenGL Shading Language does not support any kind of pointer type.
The use of pointer types in Bitcode will immediately abort the serialization
process.
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Chapter 6

Evaluation

All tests where conducted on a Intel Core 2 Quad (Q9400) machine with
4 GB of RAM and a NVIDIA GeForce 9600 GT graphics card (driver ver-
sion 195.36.24). We took the OpenCL test cases from the AMD Stream
SDK v2.2 and ported them to C augmented with our intrinsics. The kernels
were then compiled to LLVM bitcode using the Clang C front-end. All the
OpenCL samples in the SDK come with a CPU reference computation, that
we used to verify the correctness of the synthesized kernels. As the kernel
CFGs were already structured they were unaffected by the restructuring
transformations. We evaluated the running time of the original kernels in
comparison with those generated from unoptimized (O0) and optimized (O3)
LLVM-Bitcode modules. Problem sizes were increased all over the board to
obtain more expressive results on the kernel runtime.

6.1 OpenCL Results

6.1.1 Running Time of structured Control-Flow Graphs

kernel (n) runtime runtime runtime relative
(original) (O0) (O3) o. / O3

[ms] [ms] [ms] [%]

NBody (65536) 1271 1271 1333 95.3
FFT (224) 106 106 106 100.0
FloydWarshall (512) 780 780 440 177.3
BlackScholes (64) 3 3 3 100.0
DCT (1024) 57 57 58 98.3
Binomial Option (1024) 33 33 33 100.0

Table 6.1: OpenCL runtime performance.
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kernel basic blocks decompile time

no. [ms]

NBody 9 9
FFT 39 62
FloydWarshall 4 6
BlackScholes 2 8
DCT 16 10
Binomial Option 23 6

Table 6.2: Bitcode complexity and decompile time (O0).

The results in Table 6.1 show the average runtime of the OpenCL test kernels
in ten iterations (original and synthesized (build command clang++ -emit-llvm -m32

with -O0 and -O3)). The graphics hardware used for testing has a 32-bit
architecture. This is communicated to the front-end by passing the -m32

command line option. Bitcode sizes in number of basic blocks and the re-
quired decompilation times are shown in Table 6.2.

6.1.2 Correctness

All kernels except the FFT-testcase passed perfectly, i.e. the computed val-
ues were equal to those of the CPU reference computation. As for FFT, we
detected minor deviations from the ground truth when optimizations were
disabled (O0). Further analysis revealed a maximal difference of 0.01 in
0.01% of the computed values (224 in total) over ten randomized iterations.

6.1.3 Performance Impact of LLVM Optimizations

Inspection of the NBody kernel functions showed, that LLVM optimizations
eliminate multiple loads to the same location and reuse the value from the
first load instead. This caused the suboptimal running time for the NBody-
O3 case, as the kernel performed equally to the original when the load was
replicated manually.
On the other hand, the same reuse of loaded values could significantly im-
prove the kernel running time of the FloydWarshall kernel. Overall the
impact of optimizations was low.

6.2 Interpretation

Our results suggests that näıve PHI-Node elimination and a simple infini-
tive loop primitive with break and continue statements is sufficient for
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lossless decompilation of structured CFGs. This is most likely due to opti-
mizations occurring in the NVIDIA OpenCL compiler. We assume that this
compiler internally uses standard techniques such as SSA form and CFGs
that eliminate any artifacts introduced by decompilation. At the time of
writing no other tool chain was available so it must be speculated how the
kernels would perform, e.g. on AMD graphics hardware.
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Chapter 7

Conclusions

With our decompiler back-end for LLVM we have shown that it is possible to
decompile LLVM Bitcode into high-level programs. The evaluation provides
evidence that this process is lossless for structured Control-Flow Graphs. In
the case of unstructured CFGs restructuring transformations can generate
a structured program with equivalent functional semantics. We conjecture
that our pipeline is able to decompile any unstructured CFG, with at most
2-way conditionals, into a completely structured high-level representation.
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Chapter 8

Future Work

8.1 Improvements to the Decompiler

The implemented high-level primitives have proven to be sufficient for ex-
pressing structured programs. In order to reduce block duplication in more
complex cases, it may be beneficial to add support for additional primitives
such as switches and short-circuit boolean expressions. As mentioned in the
discussion of abstract high-level primitives, general switches may specify dif-
ferent mandatory exit nodes for each child region, i.e. if there is no break to
delimit in front of case labels. To handle these cases, the concept of solver
procedures and high-level primitives needs to be generalized further.

We currently use node splitting to cope with unstructured acyclic control-
flow. Eventhough it did not occur in the test cases, this strategy may lead
to a significant increase of code size and more divergent control-flow. GPU-
architectures, however, operate more efficiently on uniform control-flow pat-
terns, i.e. divergence among threads in a group may provoke serial schedul-
ing. Block predication could possibly avoid this.

We build our own the high-level representation on top of LLVM CFGs.
However, the Clang compiler front-end framework for LLVM defines a well
established AST-format. Translating our representation into the Clang AST
format would open up several opportunities. Targeting Clang-ASTs would
make an actual decompiler with respect to the LLVM framework. Also the
serialization pass could then operate on Clang ASTs directly.

Findings while implementing Controlled Node Splitting suggest the al-
gorithm for CNS could be made more efficiently. The improved algorithm
would operate on the “irreducible loop tree“ that we build for detecting node
candidates. This has minor priority, however, unless the decompiler will be
applied to bigger programs than the fairly brief kernel functions and shaders.
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8.1.1 Sign Recovery

LLVM does not distinguish signed and unsigned integer values by type (e.g.
both int and unsigned int become i32). Instead if there is an integer op-
eration that dependends on its argument being signed or not, then there are
two instances of that function (one interpreting the argument as signed, the
other as unsigned respectivelly). We account for this in the case of builtin
LLVM instructions (e.g. the cast of an unsigned integer to a float type) by
reinterpreting the argument at the call site before passing it to the function.
We intend to improve this by also specifying the argument signs of target
language intrinsics. Also, a sign recovery pass could recover sign informa-
tion, such that most of the sign-casts are eliminated. This would enhance
the readability of the decompiled programs.

8.1.2 Back-end Feature Completeness

The GLSL back-end is not yet feature complete in terms of the language
specification. We will implement all intrinsics and stage functions in the
OpenGL 4.1 core profile (e.g. geometry shaders / tesselation).

8.1.3 Evaluation of Control-Flow Restructuring

The OpenCL kernels are necessarily structured, so we can’t use our back-
end directly to measure the impact of restructuring CFG transformations
on the kernel/shader running time. It would only be possible to compare
structured programs obtained generated with different restructuring meth-
ods (e.g. predication, node splitting, etc.). With the recent PTX-Backend
[10] for LLVM, however, we could directly assess the effect of restructuring
transformations because this back-end also generates code from unaltered
unstructured CFGs. We could measure the actual performance impact of
CFG restructuring on graphics hardware.

8.2 GPU-centric Optimizations For LLVM

As has been discussed in the evaluation section, some LLVM optimizations
do actually make memory access patterns worse for GPUs. Although LLVM
bitcode features address spaces, their concept is limited to disjoined mem-
ory locations. Critically there is no notion of SIMT function executions
and therefore LLVM optimizes the code for multi-threaded execution on the
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CPU at best.
In contrast, the GPU threading model is fairly complex with threads being
grouped hierachally. At every level of the hierachy there is shared mem-
ory that can be accessed from any group member. This scales up to global
memory that is freely accessible from any thread at any time. Also memory
operations are only efficient if all members of a group simultaneously access
addresses that are linear in their index within that group. All of this is not
yet included in LLVM.

In the case of OpenGL, shader program performance could be improved
by moving computations to earlier processing stages and using interpolated
results instead (e.g. compute some value per-vertex and let the hardware
interpolate it for each fragment). Although this is lossless for linear opera-
tions, more aggressive optimizations may be possible when accepting some
(controlled) loss in visual quality. In spirit of Loop-Independent Code Mo-
tion (LICM), such a class of optimizations could be referred to as Stage-
Independent Code Motion (SICM). Other optimizations include e.g. stor-
ing precomputed values in textures or dynamic approximation by Level-Of-
Detail.
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Appendix A

Code Listings for the
N-Body Simulation Example

A.1 Original N-Body OpenCL Program

/∗
∗ For a d e s c r i p t i o n o f t h e a l g o r i t hm and the terms used , p l e a s e see t h e
∗ documentat ion f o r t h i s sample .
∗
∗ Each work−i tem in v o c a t i o n o f t h i s k e rne l , c a l c u l a t e s t h e p o s i t i o n f o r
∗ one p a r t i c l e
∗
∗ Work−i t ems use l o c a l memory to reduce memory bandwidth and reuse o f data
∗/

k e r n e l

void

nbody sim (

g l o b a l f l o a t 4 ∗ pos ,

g l o b a l f l o a t 4 ∗ vel ,

int numBodies ,

f loat deltaTime ,

f loat epsSqr ,

l o c a l f l o a t 4 ∗ l oca lPos ,
g l o b a l f l o a t 4 ∗ newPosition ,
g l o b a l f l o a t 4 ∗ newVelocity )

{
unsigned int t i d = g e t l o c a l i d ( 0 ) ;

unsigned int gid = g e t g l o b a l i d ( 0 ) ;

unsigned int l o c a l S i z e = g e t l o c a l s i z e ( 0 ) ;

// Number o f t i l e s we need to i t e r a t e

unsigned int numTiles = numBodies / l o c a l S i z e ;

// p o s i t i o n o f t h i s work−i tem

f l o a t 4 myPos = pos [ g id ] ;
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f l o a t 4 acc = ( f l o a t 4 ) ( 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ;

for ( int i = 0 ; i < numTiles ; ++i )

{

// l oad one t i l e i n t o l o c a l memory

int idx = i ∗ l o c a l S i z e + t id ;

l o ca lPos [ t i d ] = pos [ idx ] ;

// Synchron i ze to make sure data i s a v a i l a b l e f o r p r o c e s s i n g

ba r r i e r (CLK LOCAL MEM FENCE) ;

// c a l c u l a t e a c c e l e r a t i o n e f f e c t due to each body

// a [ i−>j ] = m[ j ] ∗ r [ i−>j ] / ( r ˆ2 + epsSqr )ˆ (3/2)

for ( int j = 0 ; j < l o c a l S i z e ; ++j )

{

// Ca l c u l a t e a c c e l e a r t i o n caused by p a r t i c l e j on p a r t i c l e i

f l o a t 4 r = loca lPos [ j ] − myPos ;

f loat d i s tSq r = r . x ∗ r . x + r . y ∗ r . y + r . z ∗ r . z ;

f loat invDis t = 1 .0 f / sq r t ( d i s tSq r + epsSqr ) ;

f loat invDistCube = invDis t ∗ invDis t ∗ invDis t ;

f loat s = loca lPos [ j ] .w ∗ invDistCube ;

// accumulate e f f e c t o f a l l p a r t i c l e s

acc += s ∗ r ;

}

// Synchron i ze so t h a t nex t t i l e can be l oaded

ba r r i e r (CLK LOCAL MEM FENCE) ;

}

f l o a t 4 oldVel = ve l [ g id ] ;

// updated p o s i t i o n and v e l o c i t y

f l o a t 4 newPos = myPos + oldVel ∗ deltaTime + acc ∗ 0 .5 f ∗ deltaTime ∗ deltaTime ;

newPos .w = myPos .w;

f l o a t 4 newVel = oldVel + acc ∗ deltaTime ;

// w r i t e to g l o b a l memory

newPosit ion [ g id ] = newPos ;

newVelocity [ g id ] = newVel ;
}
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A.2 N-Body Bitcode Module

This is the LLVM-bitcode module of the n-Body test case right before the extrac-

tion pass is run (the loop simplify pass of LLVM and our preparation pass have

been run). The code was generated with Clang from a C-program (build line:

clang++ -emit-llvm -m32 -O2). The module header and comments behind in-

structions were removed from the original bitcode. Also line breaks were inserted

where necessary to make the listing fit on the page.

de f i n e void @compute (
<4 x f l o a t> addrspace (1)∗ nocapture %pos ,
<4 x f l o a t> addrspace (1)∗ nocapture %vel ,
i 32 %numBodies ,
f l o a t %deltaTime ,
f l o a t %epsSqr ,
<4 x f l o a t> addrspace (3)∗ nocapture %loca lPos ,
<4 x f l o a t> addrspace (1)∗ nocapture %newPosition ,
<4 x f l o a t> addrspace (1)∗ nocapture %newVelocity ) {

entry :
%compute 0 0 = t a i l c a l l i 32 @g e t l o c a l i d ( i32 0) readnone
%compute 0 1 = t a i l c a l l i 32 @ge t g l oba l i d ( i 32 0) readnone
%compute 0 2 = t a i l c a l l i 32 @g e t l o c a l s i z e ( i 32 0) readnone
%compute 0 3 = udiv i32 %numBodies , %compute 0 2
%compute 0 4 =

gete l ementptr inbounds <4 x f l o a t> addrspace (1)∗ %pos , i 32 %compute 0 1
%compute 0 5 = load <4 x f l o a t> addrspace (1)∗ %compute 0 4
%compute 0 6 = icmp eq i32 %compute 0 3 , 0
%compute 0 7 = b i t c a s t <4 x f l o a t> z e r o i n i t i a l i z e r to <4 x f l o a t>
br i 1 %compute 0 6 , l a b e l %f o r . end84 , l a b e l %bb . nph134

bb . nph134 :
%compute 1 0 =

gete l ementptr inbounds <4 x f l o a t> addrspace (3)∗ %loca lPos , i 32 %compute 0 0
%compute 1 1 = icmp eq i32 %compute 0 2 , 0
%compute 1 2 = b i t c a s t i 32 0 to i32
%compute 1 3 = b i t c a s t <4 x f l o a t> z e r o i n i t i a l i z e r to <4 x f l o a t>
br l a b e l %f o r . body

f o r . body :
%compute 2 0 =

phi i32 [ %compute 1 2 , %bb . nph134 ] , [ %compute 6 2 , %f o r . end ]
%compute 2 1 =

phi <4 x f l o a t> [ %compute 1 3 , %bb . nph134 ] , [ %compute 6 0 , %f o r . end ]
%compute 2 2 = mul i32 %compute 0 2 , %compute 2 0
%compute 2 3 = add i32 %compute 0 0 , %compute 2 2
%compute 2 4 = gete l ementptr <4 x f l o a t> addrspace (1)∗ %pos , i 32 %compute 2 3
%compute 2 5 = load <4 x f l o a t> addrspace (1)∗ %compute 2 4
s t o r e <4 x f l o a t> %compute 2 5 , <4 x f l o a t> addrspace (3)∗ %compute 1 0
t a i l c a l l void @ba r r i e r l ( )
br i 1 %compute 1 1 , l a b e l %f o r . end , l a b e l %f o r . body29 . preheader

f o r . body29 . preheader :
%compute 3 0 = b i t c a s t i 32 0 to i32
br l a b e l %f o r . body29

f o r . body29 :
%compute 4 0 =

phi i32
[ %compute 4 26 , %f o r . body29 ] ,
[ %compute 3 0 , %f o r . body29 . preheader ]

%compute 4 1 =
phi <4 x f l o a t>

[ %compute 4 25 , %f o r . body29 ] ,
[ %compute 2 1 , %f o r . body29 . preheader ]

%compute 4 2 =
gete l ementptr <4 x f l o a t> addrspace (3)∗ %loca lPos , i 32 %compute 4 0

%compute 4 3 = load <4 x f l o a t> addrspace (3)∗ %compute 4 2
%compute 4 4 = fsub <4 x f l o a t> %compute 4 3 , %compute 0 5
%compute 4 5 = extrac te l ement <4 x f l o a t> %compute 4 4 , i 32 0
%compute 4 6 = fmul f l o a t %compute 4 5 , %compute 4 5
%compute 4 7 = extrac te l ement <4 x f l o a t> %compute 4 4 , i 32 1
%compute 4 8 = fmul f l o a t %compute 4 7 , %compute 4 7
%compute 4 9 = fadd f l o a t %compute 4 6 , %compute 4 8
%compute 4 10 = extracte l ement <4 x f l o a t> %compute 4 4 , i 32 2
%compute 4 11 = fmul f l o a t %compute 4 10 , %compute 4 10
%compute 4 12 = fadd f l o a t %compute 4 9 , %compute 4 11
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%compute 4 13 = fadd f l o a t %compute 4 12 , %epsSqr
%compute 4 14 = t a i l c a l l f l o a t @sqr t f ( f l o a t %compute 4 13 ) readnone
%compute 4 15 = fd i v f l o a t 1 .000000 e+00, %compute 4 14
%compute 4 16 = fmul f l o a t %compute 4 15 , %compute 4 15
%compute 4 17 = fmul f l o a t %compute 4 16 , %compute 4 15
%compute 4 18 = extracte l ement <4 x f l o a t> %compute 4 3 , i 32 3
%compute 4 19 = fmul f l o a t %compute 4 18 , %compute 4 17
%compute 4 20 =

in s e r t e l ement <4 x f l o a t> undef , f l o a t %compute 4 19 , i 32 0
%compute 4 21 =

in s e r t e l ement <4 x f l o a t> %compute 4 20 , f l o a t %compute 4 19 , i 32 1
%compute 4 22 =

in s e r t e l ement <4 x f l o a t> %compute 4 21 , f l o a t %compute 4 19 , i 32 2
%compute 4 23 =

in s e r t e l ement <4 x f l o a t> %compute 4 22 , f l o a t %compute 4 19 , i 32 3
%compute 4 24 = fmul <4 x f l o a t> %compute 4 23 , %compute 4 4
%compute 4 25 = fadd <4 x f l o a t> %compute 4 1 , %compute 4 24
%compute 4 26 = add nsw i32 %compute 4 0 , 1
%compute 4 27 = icmp eq i32 %compute 4 26 , %compute 0 2
br i 1 %compute 4 27 , l a b e l %f o r . end . l oopex i t , l a b e l %f o r . body29

f o r . end . l o op ex i t :
%compute 5 0 = phi <4 x f l o a t> [ %compute 4 25 , %f o r . body29 ]
br l a b e l %f o r . end

f o r . end :
%compute 6 0 =

phi <4 x f l o a t>
[ %compute 2 1 , %f o r . body ] ,
[ %compute 5 0 , %f o r . end . l o op ex i t ]

t a i l c a l l void @ba r r i e r l ( )
%compute 6 2 = add nsw i32 %compute 2 0 , 1
%compute 6 3 = icmp eq i32 %compute 6 2 , %compute 0 3
br i 1 %compute 6 3 , l a b e l %f o r . end84 . l oopex i t , l a b e l %f o r . body

f o r . end84 . l o op ex i t :
%compute 7 0 = phi <4 x f l o a t> [ %compute 6 0 , %f o r . end ]
br l a b e l %f o r . end84

f o r . end84 :
%compute 8 0 =

phi <4 x f l o a t>
[ %compute 0 7 , %entry ] ,
[ %compute 7 0 , %f o r . end84 . l o op ex i t ]

%compute 8 1 =
gete l ementptr inbounds <4 x f l o a t> addrspace (1)∗ %vel , i 32 %compute 0 1

%compute 8 2 = load <4 x f l o a t> addrspace (1)∗ %compute 8 1
%compute 8 3 = in s e r t e l ement <4 x f l o a t> undef , f l o a t %deltaTime , i 32 0
%compute 8 4 =

shu f f l e v e c t o r
<4 x f l o a t> %compute 8 3 ,
<4 x f l o a t> undef ,
<4 x i32> z e r o i n i t i a l i z e r

%compute 8 5 = fmul <4 x f l o a t> %compute 8 2 , %compute 8 4
%compute 8 6 = fadd <4 x f l o a t> %compute 0 5 , %compute 8 5
%compute 8 7 =
fmul
<4 x f l o a t> %compute 8 0 ,
< f l o a t 5 .000000 e−01, f l o a t 5 .000000 e−01, f l o a t 5 .000000 e−01, f l o a t 5 .000000 e−01>
%compute 8 8 = fmul <4 x f l o a t> %compute 8 7 , %compute 8 4
%compute 8 9 = fmul <4 x f l o a t> %compute 8 8 , %compute 8 4
%compute 8 10 = fadd <4 x f l o a t> %compute 8 6 , %compute 8 9
%compute 8 11 =

shu f f l e v e c t o r
<4 x f l o a t> %compute 8 10 ,
<4 x f l o a t> %compute 0 5 ,
<4 x i32> <i 32 0 , i 32 1 , i 32 2 , i 32 7>

%compute 8 12 = fmul <4 x f l o a t> %compute 8 0 , %compute 8 4
%compute 8 13 = fadd <4 x f l o a t> %compute 8 2 , %compute 8 12
%compute 8 14 =

gete l ementptr inbounds
<4 x f l o a t> addrspace (1)∗ %newPosition ,
i 32 %compute 0 1

s t o r e <4 x f l o a t> %compute 8 11 , <4 x f l o a t> addrspace (1)∗ %compute 8 14
%compute 8 16 =

gete l ementptr inbounds
<4 x f l o a t> addrspace (1)∗ %newVelocity ,
i 32 %compute 0 1

s t o r e <4 x f l o a t> %compute 8 13 , <4 x f l o a t> addrspace (1)∗ %compute 8 16
r e t void

}

dec l a r e i32 @g e t l o c a l i d ( i32 ) readnone

61



dec l a r e i32 @ge t g l oba l i d ( i 32 ) readnone

de c l a r e i32 @g e t l o c a l s i z e ( i 32 ) readnone

de c l a r e void @ba r r i e r l ( )

d e c l a r e f l o a t @sqr t f ( f l o a t ) readnone
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A.3 Generated OpenCL program

This file (./nbody.cl) was built using the command “. opencl nbody“ in the root

directory of the project. Line breaks were inserted manually where necessary to

make the listing fit on the page. Also empty lines were removed.

void compute (
g l o b a l f l o a t 4 ∗ ,
g l o b a l f l o a t 4 ∗ ,

int ,
f l o a t ,
f l o a t ,

l o c a l f l o a t 4 ∗ ,
g l o b a l f l o a t 4 ∗ ,
g l o b a l f l o a t 4 ∗ ) ;

k e r n e l void compute (
g l o b a l f l o a t 4 ∗ pos ,
g l o b a l f l o a t 4 ∗ vel ,

i n t numBodies ,
f l o a t deltaTime ,
f l o a t epsSqr ,

l o c a l f l o a t 4 ∗ l oca lPos ,
g l o b a l f l o a t 4 ∗ newPosition ,
g l o b a l f l o a t 4 ∗ newVelocity )

{
f l o a t 4 compute 4 3 ;
f l o a t 4 compute 4 4 ;
f l o a t compute 4 5 ;
f l o a t compute 4 6 ;
f l o a t compute 4 7 ;
f l o a t compute 4 8 ;
f l o a t compute 4 9 ;
i n t compute 2 0 in ;
i n t compute 2 0 ;
bool compute 1 1 ;
f l o a t 4 compute 2 1 in ;
f l o a t 4 compute 2 1 ;
i n t compute 0 0 ;
i n t compute 0 1 ;
i n t compute 0 2 ;
i n t compute 0 3 ;
f l o a t 4 compute 0 5 ;
bool compute 0 6 ;
i n t compute 2 2 ;
i n t compute 2 3 ;
f l o a t 4 compute 2 5 ;
i n t compute 4 0 in ;
i n t compute 4 0 ;
f l o a t 4 compute 4 1 in ;
f l o a t 4 compute 4 1 ;
f l o a t 4 compute 8 0 in ;
f l o a t 4 compute 8 0 ;
f l o a t 4 compute 8 2 ;
f l o a t 4 compute 8 3 ;
f l o a t 4 compute 8 4 ;
f l o a t 4 compute 8 5 ;
f l o a t 4 compute 8 6 ;
f l o a t 4 compute 8 7 ;
f l o a t 4 compute 8 8 ;
f l o a t compute 4 10 ;
f l o a t compute 4 11 ;
f l o a t compute 4 12 ;
f l o a t compute 4 13 ;
f l o a t compute 4 14 ;
f l o a t compute 4 15 ;
f l o a t compute 4 16 ;
f l o a t compute 4 17 ;
f l o a t compute 4 18 ;
f l o a t compute 4 19 ;
f l o a t 4 compute 4 20 ;
f l o a t 4 compute 4 21 ;
f l o a t 4 compute 4 22 ;
f l o a t 4 compute 4 23 ;
f l o a t 4 compute 4 24 ;
f l o a t 4 compute 4 25 ;
i n t compute 4 26 ;
bool compute 4 27 ;
f l o a t 4 compute 6 0 in ;
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f l o a t 4 compute 6 0 ;
i n t compute 6 2 ;
bool compute 6 3 ;
f l o a t 4 compute 8 9 ;
f l o a t 4 compute 8 10 ;
f l o a t 4 compute 8 11 ;
f l o a t 4 compute 8 12 ;
f l o a t 4 compute 8 13 ;
f l o a t 4 compute 5 0 in ;
f l o a t 4 compute 5 0 ;
i n t compute 1 2 ;
f l o a t 4 compute 1 3 ;
i n t compute 3 0 ;
f l o a t 4 compute 0 7 ;
f l o a t 4 compute 7 0 in ;
f l o a t 4 compute 7 0 ;

compute 0 0 = g e t l o c a l i d (0 x00000000 ) ;
compute 0 1 = g e t g l o b a l i d (0 x00000000 ) ;
compute 0 2 = g e t l o c a l s i z e (0 x00000000 ) ;
compute 0 3 = ( a s u i n t ( numBodies ) / a s u i n t ( compute 0 2 ) ) ;
compute 0 5 = ( pos ) [ compute 0 1 ] ;
compute 0 6 = ( compute 0 3==0x00000000 ) ;
compute 0 7 = ( f l o a t 4 ) ( 0 . 0 f ) ;
i f ( ! compute 0 6 )
{

compute 1 1 = ( compute 0 2==0x00000000 ) ;
compute 1 2 = 0x00000000 ;
compute 1 3 = ( f l o a t 4 ) ( 0 . 0 f ) ;
compute 2 0 in = compute 1 2 ;
compute 2 1 in = compute 1 3 ;
whi le ( t rue )
{

compute 2 0 = compute 2 0 in ;
compute 2 1 = compute 2 1 in ;
compute 2 2 = ( compute 0 2∗ compute 2 0 ) ;
compute 2 3 = ( compute 0 0+compute 2 2 ) ;
compute 2 5 = ( pos ) [ compute 2 3 ] ;
( l o ca lPos ) [ compute 0 0 ] = compute 2 5 ;
b a r r i e r (CLK LOCAL MEM FENCE) ;
i f ( ! compute 1 1 )
{

compute 3 0 = 0x00000000 ;
compute 4 0 in = compute 3 0 ;
compute 4 1 in = compute 2 1 ;
whi le ( t rue )
{

compute 4 0 = compute 4 0 in ;
compute 4 1 = compute 4 1 in ;
compute 4 3 = ( loca lPos ) [ compute 4 0 ] ;
compute 4 4 = ( compute 4 3−compute 0 5 ) ;
compute 4 5 = compute 4 4 . s0 ;
compute 4 6 = ( compute 4 5∗ compute 4 5 ) ;
compute 4 7 = compute 4 4 . s1 ;
compute 4 8 = ( compute 4 7∗ compute 4 7 ) ;
compute 4 9 = ( compute 4 6+compute 4 8 ) ;
compute 4 10 = compute 4 4 . s2 ;
compute 4 11 = ( compute 4 10∗ compute 4 10 ) ;
compute 4 12 = ( compute 4 9+compute 4 11 ) ;
compute 4 13 = ( compute 4 12+epsSqr ) ;
compute 4 14 = sq r t ( compute 4 13 ) ;
compute 4 15 = (1 . 0 f / compute 4 14 ) ;
compute 4 16 = ( compute 4 15∗ compute 4 15 ) ;
compute 4 17 = ( compute 4 16∗ compute 4 15 ) ;
compute 4 18 = compute 4 3 . s3 ;
compute 4 19 = ( compute 4 18∗ compute 4 17 ) ;
compute 4 20 . s0 = compute 4 19 ;
compute 4 21 = compute 4 20 ;
compute 4 21 . s1 = compute 4 19 ;
compute 4 22 = compute 4 21 ;
compute 4 22 . s2 = compute 4 19 ;
compute 4 23 = compute 4 22 ;
compute 4 23 . s3 = compute 4 19 ;
compute 4 24 = ( compute 4 23∗ compute 4 4 ) ;
compute 4 25 = ( compute 4 1+compute 4 24 ) ;
compute 4 26 = ( compute 4 0+0x00000001 ) ;
compute 4 27 = ( compute 4 26==compute 0 2 ) ;
i f ( compute 4 27 )
{

compute 5 0 in = compute 4 25 ;
compute 5 0 in = compute 4 25 ;
break ;

}
else
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{
compute 4 0 in = compute 4 26 ;
compute 4 1 in = compute 4 25 ;

}
}

compute 5 0 = compute 5 0 in ;
compute 6 0 in = compute 5 0 ;

}
else
{

compute 6 0 in = compute 2 1 ;
}
compute 6 0 = compute 6 0 in ;
b a r r i e r (CLK LOCAL MEM FENCE) ;
compute 6 2 = ( compute 2 0+0x00000001 ) ;
compute 6 3 = ( compute 6 2==compute 0 3 ) ;
i f ( compute 6 3 )
{

compute 7 0 in = compute 6 0 ;
compute 7 0 in = compute 6 0 ;
break ;

}
else
{

compute 2 0 in = compute 6 2 ;
compute 2 1 in = compute 6 0 ;

}
}

compute 7 0 = compute 7 0 in ;
compute 8 0 in = compute 7 0 ;

}
else
{

compute 8 0 in = compute 0 7 ;
}
compute 8 0 = compute 8 0 in ;
compute 8 2 = ( ve l ) [ compute 0 1 ] ;
compute 8 3 . s0 = deltaTime ;
compute 8 4 = ( f l o a t 4 ) ( compute 8 3 . s0000 ) ;
compute 8 5 = ( compute 8 2∗ compute 8 4 ) ;
compute 8 6 = ( compute 0 5+compute 8 5 ) ;
compute 8 7 = ( compute 8 0 ∗( f l o a t 4 ) ( 0 . 5 f , 0 . 5 f , 0 .5 f , 0 .5 f ) ) ;
compute 8 8 = ( compute 8 7∗ compute 8 4 ) ;
compute 8 9 = ( compute 8 8∗ compute 8 4 ) ;
compute 8 10 = ( compute 8 6+compute 8 9 ) ;
compute 8 11 = ( f l o a t 4 ) ( compute 8 10 . s012 , compute 0 5 . s3 ) ;
compute 8 12 = ( compute 8 0∗ compute 8 4 ) ;
compute 8 13 = ( compute 8 2+compute 8 12 ) ;
( newPosit ion ) [ compute 0 1 ] = compute 8 11 ;
( newVelocity ) [ compute 0 1 ] = compute 8 13 ;
re turn ;

}
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