
WCET Optimization in a Shared
Bus Scenario

Bachelor-Thesis

submitted on: 27.03.2013

Computer Science at Saarland University

Name: Maximilian John
Matriculation number: 2531835
Degree Course: Computer Science
Study Regulations: Bachelor Computer Science 2006
First Supervisor: Prof. Dr. Sebastian Hack
Second Supervisor: Prof. Dr. Jan Reineke
Advisor: Michael Jacobs

Eidesstattliche Erklärung

Hiermit versichere ich, die vorliegende Bachelorarbeit mit dem Titel "WCET Op-
timization in a Shared Bus Scenario" selbständig, ohne fremde Hilfe und ohne Be-
nutzung andere als der von mir angegebenen Quellen angefertigt zu haben. Alle
aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche
gekennzeichnet. Die Arbeit wurde noch keiner Prüfungsbehörde in gleicher oder
ähnlicher Form vorgelegt.

Saarbrücken, den 27.03.2013

Maximilian John

Abstract

In time-critical multi-core systems with shared buses we cannot apply the same
worst-case execution time (WCET) analyses as with dedicated resources. This is
due to additional blocking time occuring through bus interferences. We consider
a setting with TDMA bus arbitration. The optimization of the wcet depends on
two parameters: system schedule and bus schedule. None of the parameters can be
optimized in isolation. We try to speed up the exhaustive optimization as well as to
provide good heuristics.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Timing analysis . 1
1.1.2 Multi-cores . 2

2 System Model 5
2.1 Tasks . 5
2.2 System schedule . 6
2.3 Resource schedule . 6
2.4 WCET . 7
2.5 Challenge . 9

2.5.1 Cyclic dependency between system and resource schedule . . . 10

3 Optimization Algorithm 11
3.1 Complexity . 11
3.2 Conceptual approach . 12
3.3 Traversing the search space . 18

3.3.1 Exhaustive iterators . 18
3.3.2 Lower bound operators . 18
3.3.3 Sorting schedules . 21

3.4 Evaluation . 22
3.4.1 The test suites . 22

4 Heuristics 27
4.1 Consider fewer schedules . 27
4.2 On-the-fly construction . 28
4.3 Metrics . 30

4.3.1 System schedule metrics . 30
4.3.2 Resource schedule metric . 34
4.3.3 Utilization of the metrics . 35

4.4 Evaluation . 38
4.4.1 Consider fewer schedules . 38
4.4.2 On-the-fly construction . 40
4.4.3 Alternating resource schedule heuristic 43

4.5 Conclusion . 46

5 Future work 49
5.1 Concrete realization of a model . 49
5.2 Non-preemptive tasks . 49
5.3 Allow conditional branches . 51
5.4 Less granular resource schedules . 52

6 Summary 55

Bibliography 56

Chapter 1

Introduction

1.1 Motivation

1.1.1 Timing analysis

In many practical applications of computer science, timing analysis plays an impor-
tant role. Often times, there is someone who wants to know how fast a computer
can deliver certain results, i.e. how fast a program terminates. When we talk about
execution time(et) in the following, we mean exactly this. But we might not only
be interested in this particular time because when we talk about the execution time
of a program or a part of a program, this only refers to the time this processor
spends to execute the particular program. But often if we consider a whole system,
i.e. multiple parts of programs, then we do not only want to know how long the
execution of every single part lasts, but also absolute points time when a calculation
is requested and when it terminates. We call those two events release and termi-
nation time. Furthermore, we are interested in the difference between release and
termination which is called response time(rt). Obviously, to holds that

rt = release− termination

To illustrate the difference between those terms, consider figure 1.1. We can see
two program parts τ1 and τ2. τ2 can only start its computation when τ1 is finished.
That’s why it cannot start directly after its release and thus execution and response
time are different.

τ1 τ2

etτ2 = 6

rtτ2 = 8

releaseτ2 = 2
terminationτ2 = 10

time
0 4 10

Figure 1.1: Timing terminology

1

Execution Execution time
5

8

4

6

Best case execution time : 4
Worst case execution time: 8

Figure 1.2: All possible execution times

There have been many approaches in the last decades to make timing analysis
more and more precise. But how does timing analysis work conceptually? If you
consider a program or at least a program part, you have to consider all the possible
behaviour which might occur during execution. So often, there is not only just one
possible time when we talk about how fast a program terminates. This is what
makes the analysis so hard, we mostly have to predict a time interval where all
the possible execution times are located in. Therefore, we can talk about the best
and worst possible execution time as illustrated in figure 1.2. In this example, all
possible execution times are listed, thus we can determine the best and the worst
case. The commonly used names are best-case execution time(BCET) and worst-case
execution time(WCET). Analogously, we will further talk about best-case response
time(BCRT) and worst-case response time(WCRT). The analysis of the WCET is
a widely targeted challenge [cf. WEE+08].

The most important field of application of timing analysis in general is the anal-
ysis of safety-critical applications. Saftey-critical applications often have critical
constraints which must not be hurt by any possible execution of the program. In
time-critical applications, those constraints relate to time deadlines. This means
that an action must be happen within a given amount of time. We will futher call
those actions tasks. For example, if we consider an air bag in a car, one might want
the air bag to unfold within a few milliseconds. Such problems are tailor-made for
the timing analysis. We want to determine if theWCRTs of the considered tasks do
nut exceed the deadlines. But we will define this problem more exactly in chapter
2.

1.1.2 Multi-cores

In today’s computer systems, we often do not find just one single processor-core. As
we want our systems to be more performant, we often use several processor-cores.
One way is to take several independent single-core processors and let them run
simultaneously to achieve a higher performance. But in this case, the construction
is not only space-consuming, but also expensive. Thus, the common way is to use a
multi-core system which means that you have several processors which share some
resources such as data buses or shared cashes. The general concept of a multi-core
system is shown in simplified terms in figure 1.3. We will take a closer look at the

2

effects of bus sharing. We aim to prevent data from being corrupted when several
cores try to access the bus at the same time, thus we have to introduce an arbiter
for this bus. The task of this arbiter is to grant or permit the bus access to its
supplicants so that there is only one bus access at a time. When two processing
units try to access the shared bus at the same time we call this behaviour conflict.
Shortly summarized, the arbiter has to solve those conflicts.

There are several ways to do this. One could define rules statically which means
that before the system is started we determine which processor may access the
bus at each point in time. The advantage of this so called Time Division Multiple
Access(TDMA) approach is that we can analyze each processor in isolation because
we do no care about the behavior of the rest of the system. The obvious disadvantage
is that we statically have to decide for a schedule. And finding an optimal TDMA
schedule is a non-trivial challenge [cf. WT06] [HE05]. An alternative approach is the
field of dynamic arbitrations where we have well-known approaches like First-Come-
First-Serve or Round Robin. The advantage regarding such dynamic arbitrations
is that we always grant access to a processor which really wants to access the bus.
This is not true for static arbitrations because we can decide an arbitration without
looking at actual resource situations. This property is called work-conserving [cf.
FKY08]. But on the other hand, dynamic arbitration makes the analysis much
harder because we have to consider all processors in parallel to look at all possible
interferences. We decided to concentrate on the TDMA setting.

The single-access policy is obviously a disadvantage of a multi-core system as one
core possibly must wait accessing the shared bus because the access is not granted.
We call this characteristic interference. In single-core systems we do not have such
interferences.

Similar interferences can also appear in shared caches. Such shared resource
interferences are the reason why single-core timing analysis is not sound for multi-
core systems any more because they are not taken into account. The main goal of
the analysis of complex single-core systems [as GRG11] [WAB+10] [TFW00] is the
determination of upper bounds on the WCET . A multi-core analysis [as PSC+10]
mostly takes the results of a single-core analysis as input and concentrates on the
effects of interferences. This is also what we want to do in this thesis. We will only
concentrate on the interferences with the bus and ignore caches at all. According to
Amdahl’s law [cf. Amd67] the speedup of a multi-core system compared to a system
with one single core strongly depends on the time which cannot be parallelized,
so in our scenario the time where several processing units want to access the bus.
Figure 1.4 illustrates this calculation. We see that it is very benificial to keep the
non-parallelizable time low which will be one of our goals described in the next
chapter. Several measurements of the average-performance of multi-core systems
[as RGG+12] underline this impression. The consequence is that one has to adress
this contention for shared resources [cf. ZBF10] [FSS07].

The thesis will be organized as follows: Chapter 2 gives basic definitions of our
system model and describes our optimization problem. Chapter 3 presents some
techniques to speed up the exhaustive optimization whereas chapter 4 evolves some
heuristics. Finally, chapter 5 provides a brief outlook and chapter 6 summarizes.

3

Core 0 Core 1 · · · Core N-1

Shared bus

Shared cache

Figure 1.3: Concept of a multi-core system

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Number of cores

Sp
ee
dU

p

0%
10%
20%
30%
40%
50%

Figure 1.4: Amdahl’s law effect

4

Chapter 2

System Model

We assume a system which behaves exactly as described by the model in this chapter.
Later, we will see which properties a concrete system has to fulfil in order to fit
into this model. We consider a system model with N equal processing units PU =
{P0, · · · , PN−1} where N > 1 and TDMA bus which is shared between all processing
units. Figure 2.1 illustrates our view of the model.

2.1 Tasks

Let Tasks be the set of available tasks. In our model a task τ ∈ Tasks is described
by its naive execution time and its bus accesses σi. As an example consider Figure
2.2(a). We see a task with a naive WCET of 6 and 2 accesses. The first access is
released at time 1 and has a naive length of 1 whereas the second access is released
at time 3 and has a naive length of 2. We will call the execution time WCET
although we assume that there is only one execution time to stay consistent with
other approaches. To describe an access, we have to give information about its naive
offset relative to the start of the task and its naive length relative to its own start.
All those values are called naive because they are only safe in a single-core setting,
so they do not consider any possible bus interferences. We want to represent this
information in a more compact way. Therefore, we will now define some shortcuts
for the important values. Let τ be a task. Then we can get the naive WCET
through τ.nWCET . We can get the boolean value describing if the task is accessing
the bus at a its relative position pos by using the shortcut τ.acc(pos). Figure 2.2(b)
illustrates the usage of this shortcut.

P0 P1 · · · PN−1

Shared bus

Figure 2.1: Conceptual view of the model

5

τ.nWCET = 6

τ = σ1 σ2 σ1 : nOffsetσ1 = 1, nLengthσ1 = 1

σ2 : nOffsetσ2 = 3, nLengthσ2 = 2
(a) A task with two accesses

τ.acc(0) = false
τ.acc(1) = true
τ.acc(2) = false
τ.acc(3) = true
τ.acc(4) = true
τ.acc(5) = false

(b) Shortcuts for accesses

Figure 2.2: Task example

P0 : τ3 τ2

P1 : τ5 τ1 τ4

(a) System Schedule

P0 : τ3 τ2

P1 : τ5 τ1 τ4

res : P0 P0 P0 P1 P0 P1 P1 P0 P1

(b) Complete schedule

Figure 2.3: Schedule examples

2.2 System schedule
Intuitively, the system schedule describes which processing unit executes which tasks
in which order. So more formally, let S be the set of all system schedules. A
system schedule sys ∈ S is identified by two properties. At first, a task assignment
ρ : Tasks → PU which gives information about which task is executed on which
processing unit and secondly, a task order per processing unit. To access this task
order, we define the values sys.pre(τ) and sys.succ(τ) ∈ Tasks ∪ {null} which
delivers the predecessor or the successor of the task τ under sys, respectively. If a
task has no predecessor or no successor, the corresponding shortcut will return null.
Implicitely, we assume that all tasks are released at time 0. As example for a system
schedule consider figure 2.3(a).

2.3 Resource schedule
Let R be the set of all resource schedules. A resource schedule res : N→ PU, res ∈
R is an assignment from time to processing units. So for every point in time t ∈ N
the processing unit res(t) is allowed to access the bus. This means that all other
processing units which try to access the bus have to wait until they are scheduled. So
for the example of figure 2.3(b) this means that when we block a task once we delay
every following "square" on the same processing unit one slot to the right. We can
do this because we assume that the tasks’ accesses allow preemption. So if we have

6

P0 :

P1 :

(a) System schedule

P0 :

P1 :

res : P0 P0 P0 P1 P1 P0 P1 P0

(b) Solve one conflict

Figure 2.4: Timing Compositionality

an access with the length of 3 for example, and the access is blocked in the middle,
it will not have to start from its very beginning again, but we can just restart the
access at the point where it stopped. This blocking is denoted with a white cross in
figure 2.3(b). We also make the assumption of timing compositionality. We assume
the time between two accesses as fixed. When a task is blocked because it has an
access at the current time, it may not occur that the task can already start with a
later time block where it has no access. We will make this clear in an additional
example as there does not exist a formal definition of timing compositionality so
far [cf. WGR+09]. Nevertheless we want to assume it for our system. So consider
the system schedule in figure 2.4(a). If we now add the resource schedule in figure
2.4(b), then the whole rest of the task and of course also tasks which come later on
the same processing unit are shifted one block to the right.

From now on, if we talk about a schedule, we always mean a pair of system and
resource schedule.

2.4 WCET
As already proposed in the motivation section, the WCET of a system - or now
better said the WCET of a schedule - is the worst possible execution time of this
system. If we consider a concrete schedule, we could also talk about the execution
time of a schedule because all tasks have a fixed naive execution time. But as we
want to stay consistent with related work and with further presented approaches,
we will talk about the WCET here, too. Let (sys, res) be a schedule, then we can
calculate theWCET with respect to sys and res with the following formulas. First,
we have

execsys,res : Tasks× N× N

execsys,res(τ, pos, t) =

0 if pos ≥ τ.nWCET

1 + execsys,res(τ, pos, t+ 1) if pos < τ.nWCET

∧τ.acc(pos)
∧res(t) 6= sys.ρ(τ)

1 + execsys,res(τ, pos+ 1, t+ 1) else
(2.1)

Equation (2.1) describes the situation when the cycle pos of the task τ is next to
be executed at time t in the current setting of sys and res. If the task is finished,

7

P0 :

pos

nWCET
(a) Case 1(finished)

P0 :

pos nWCET

res : P1 P1 P1

(b) Case 2(blocked)

P0 :

pos nWCET

res : P0 P0 P0

(c) Case 3(granted)

Figure 2.5: execsys,res with an upcoming bus access

P0 : τ1

P1 : τ2

(a) sys

P0 P0 P0 P0 P0 P0

(b) res

execsys,res(τ2, 0, 0) = 1 + execsys,res(τ2, 0, 1) = 1 + 1 + execsys,res(τ2, 0, 2) = · · · =∞

Figure 2.6: Infinite execution time

so the position has already reached the naive WCET of τ , then of course we do not
add anything to the execution time of the task. Otherwise, if the task has an access
and this access is not granted by res, the time grows by 1 whereas pos stays the
same because the task is blocked. In the last case, there is either no access or the
access is granted, so both t as well as the pos are increased by 1. Figure 2.5 gives an
additional hint how to understand the parameters. Of course, this recursive formula
does not need to terminate as we can see in figure 2.6 where res(t) = P0 for all
t ∈ N. We can now use this formula to compute the WCET as well as the WCRT
of a whole task.

WCETsys,res(τ) =

{
execsys,res(τ, 0, 0) if sys.pre(τ) = null

execsys,res (τ, 0,WCRTsys,res (sys.pre (τ))) else
(2.2)

WCRTsys,res(τ) = WCETsys,res(τ)+

{
0 if sys.pre(τ) = null

WCRTsys,res(sys.pre(τ)) else
(2.3)

We see that we have a nested recursion to compute both values. Furthermore, we
recognize that the bus and the processing units start at time 0 and are additionally

8

Note 2.1. Related Work
There is already another system model [in PSC+10] adressing a similar problem.
The authors of this work describe tasks as superblocks. A superblock is described
by the amount of computation time and the amount of bus access time, but one
does not know the actual distribution of computation and accesses inside a block.
If we want to adapt our system model to theirs, we would have to construct an
own superblock for each access and a superblock for each pure computation time.
But the main focus of their work lies on the analysis of upper bounds on the
WCET [cf. SPC+11] [SCT10]. Thus they are more interested in superblocks
containing both computation and accesses.

synchronized. We also see that the starting time of a task is exactly the WCRT
of its predecessor if it exists - 0 otherwise. To compute now the WCET of one
processing unit, we need to sum up the WCETs of all tasks which are executed on
the processing unit under consideration. This brings us to the following equation.

WCETsys,res(p) =
∑

τ∈Tasks|sys.ρ(τ))=p

WCETsys,res(τ) (2.4)

WCRTsys,res(p) = max{WCRTsys,res(τ)|τ ∈ Tasks, sys.ρ(τ)) = p} (2.5)

To compute the WCRT of a processing unit, it would be also enough to take the
WCRT of the last task on this processing unit. We have to mention here that
WCET and WCRT are always identical in our scenario. Finally, we only need to
take the maximum over all processing units to get the WCET or WCRT of the
whole system.

WCETsys,res = max
p∈PU
{WCETsys,res(p)} (2.6)

WCRTsys,res = max
p∈PU
{WCRTsys,res(p)} (2.7)

2.5 Challenge

We have the number of processing units and the set of tasks as constant system
parameters. Our goal now is to optimize the WCET of the whole system. The part
of the system we can vary is the pair of system and resource schedule. This means
our overall goal in all further contexts will be to find an optimal schedule pair which
minimizes the WCET of the whole system. Formally, we have to find sysb, resb
such that

WCETsysb,resb = min{WCETsys,res|sys ∈ S, res ∈ R}

9

2.5.1 Cyclic dependency between system and resource sched-
ule

If we want to optimize the system schedule in isolation, we have to know the actual
WCETs instead of the naive ones which depend on the additional blocking time
which further depends on the resource schedule. So we need to know the resource
schedule to construct an optimal system schedule. But on the other hand, if we try
to optimize the resource schedule in isolation, we need to know the actual starting
times of tasks and accesses which again depend on the system schedule. So we have
a cyclic dependency wherefore we have to optimize both parameters at one go.

10

Chapter 3

Optimization Algorithm

3.1 Complexity

In this section we want to prove that the problem we have to solve is NP-hard.
The starting point of our reduction chain will be the Partitioning-problem as this
is NP-hard [after GJ90]. See the reduction chain in figure 3.1.

This surely needs some further explanations.

1. If we restrict Multiprocessor-Scheduling to two processors and additionally to
the minimal deadline, we exactly have the Partitioning-problem. The minimal
deadline means here the sequential execution time divided by the number of
processors, so 2 in this case. As Multiprocessor-Scheduling contains an NP-
hard problem, it is at least as hard as the contained problem.

2. If we additionally consider a shared bus, we can just restrict this problem
by allowing no accesses. Then we have just the Multiprocessor-Scheduling
problem.

3. The third edge makes the step from a decision problem to a optimization
problem. Whenever we have an NP-hard decision problem, the according
optimization problem is already NP-hard [after GJ90]. This is due to the fact
that we can solve our decision problem when we know the optimal possible
value.

4. The last step just addes an additional task to a problem which is already
NP-hard. We do not only want to know the optimal WCET of a system, we
are also interested in a schedule which leads to this WCET. If we know this
optimal schedule, we can easily determine the WCET of it and obtain the
optimal WCET like this. So we already solved the smaller problem.

Now we have proven that it is NP-hard to find an optimal schedule. But every
step in the reduction chain was more or less a generalization. The second edge for
example restricted our problem to the case where no accesses are available. But
this is actually a scenario we are not interested in, so the proof aims exactly at the
part of the problem which we do not consider. Thus we are not happy with this

11

Partitioning-Problem

Multiprocessor-Scheduling with deadline

Multiprocessor-Scheduling with shared bus and deadline

Find minimal WCET of Multiprocessor-Scheduling with shared bus

Additionally find schedule which leads to minimal WCET

Generalization (1)

Generalization (2)

Optimization (3)

Additional task (4)

Figure 3.1: NP-hardness reduction chain

reduction, but a proof which includes more parts of our whole problem would grow
beyond the bounds of this work. But we do not differ from the community with
this NP-hardness proof as the step from Partitioning to Multiprocessor-Scheduling
is also a strong restriction to only two processors and one particular deadline. This
proof is also done [in GJ90] like this. As it common, we assume that a big part of
our problem is NP-hard although we only really showed it for a small part.

3.2 Conceptual approach

We defined the setting as well as the challenge. We want to find sysb, resb such that

WCETsysb,resb = min{WCETsys,res|sys ∈ S, res ∈ R}

This formula can be translated straight-forward into Algorithm 1.

Data: S: Set of all system schedules, R: Set of all resource schedules
(sysb, resb,WCETb)← (null,null,∞);1

foreach (sys, res) ∈ S ×R do2

if WCETsys,res < WCETb then3

(sysb, resb,WCETb)← (sys, res,WCETsys,res);4

end5

end6

return (sysb, resb,WCETb);7

Algorithm 1: Conceptual Approach

12

P0 :

P1 :

res : P1 P1 P1 P0 P0 P1 P0 P1 P0

Figure 3.2: "Bad" resource schedule

We recoginize that there are still several issues we should resolve. The first one
really prevents us from imlementing the algorithm as it is now and the other ones
should just be solved to inhibit stupid decisions.

Issue 1: Infinity As a resource schedule is a function res : N→ PU , we have to
consider infinitely many possible resource schedules. Additionally we saw that the
execution time of a task can be infinite. Now it must be our goal to restrict the search
space of the resource schedules while still keeping optimality. A first approach could
be to throw away all resource schedules which do not complete the system within
an upper bound WCETUBb of WCETb. We can do this as we can always find a
schedule where the system terminates in a finite amount of time. A possible upper
bound would just be the sequential execution of all tasks. So we can restrict res to
res : {0, · · · ,WCETUBb − 1} → PU where WCETUBb =

∑
τ∈TasksWCETnaive(τ).

As we have a finite number of tasks with each a finite naive WCET , we know that
WCETUBb <∞.

Issue 2: Non-reasonable resource schedules In Figure 3.2 we see a resource
schedule we actually also do not want to take into consideration when looking for an
optimum. This resource schedule is bad because at time 2 P0 requires the bus and
a processor (here P1) which does not have an access at 2 is scheduled. Formally, we
have the following situation:

∃t ∈ N : res(t) = P1 ∧ P1 has no access at t ∧ P0 has an access at t (3.1)

At the very beginning, we stated that a big advantage of dynamic bus arbitration is
the work-conserving property. We would now like to define constraints to our TDMA
resource schedule which restricts schedules that hurt this property. To achieve this
we negate a generalization of statement (3.1) which described the bad behaviour
and construct a condition out of it:

Definition 3.1. Reasonability
A resource schedule res is reasonable if and only if ∀t ∈ N :
res(t) = Pi ⇒ Pi has an access at time t ∨

∀Pj ∈ PU \ {Pi}.Pj has no access at time t

13

Lemma 3.1. Let sys be a system schedule.
If there is a resource schedule res with WCETsys,res = K ∈ N, there is a reasonable
resource schedule resr with WCETsys,resr ≤ K.

Proof. With the following algorithm, we can construct a reasonable schedule:

1. If res is reasonable, terminate

2. Assume, res is not reasonable
⇒ ∃t ∈ N.res(t) = Pi ∧ ∃Pj ∈ PU, i 6= j.
Pj tries to access the bus and Pi not.

3. Construct resn as follows:

4. Take the first t ∈ N where point 2 holds

5. resn(t′) = res(t′)∀t′ 6= t

6. resn(t) = Pj (Pj as described above)

7. Start at point 1 with resn

Now it is still to be shown that this procedure terminates and does not enlarge
the WCET. At point 2 res is reasonable until time t − 1 and at point 6 resn is
reasonable until time t. Furthermore as Pj is scheduled one time slot more and
the rest of res did not change, we have WCETn(Pj) ≤ WCET (Pj). All other
processing units are not affected as they either do not need the bus at time t or they
were not scheduled anyway under res. The rest of resn is equal to res, so we have
∀i 6= j.WCETn(Pi) = WCET (Pi). This means that our new schedule is reasonable
for a longer time for the start (at least 1 cycle more) and the new WCET has not
increased, so the algorithm will terminate as we consider K to be a natural number.
After termination reasonability holds because this is the termination criterion.

We recognize that we solved the infinity-issue with reasonability, too. If a sched-
ule does not terminate within WCETUBb , then there was a non-reasonable blocking.
This means, we can never construct a reasonable schedule which leads to a WCET
which is greater than WCETUBb . This criterion gives us a hint on how to iteratively
construct all reasonable resource schedules given a system schedule. We just have to
solve conflict for conflict which can be illustrated by a conflict tree shown in figure
3.3.

We also see in this conflict tree that such a reasonable resource schedule including
question marks describes many concrete reasonable resource schedules. Thus, we call
the constructed resource schedules idealized as we can replace any question mark
with an arbitrary processing unit and still obtain a reasonable resource schedule.
It does not matter which processing unit to schedule at a point in time where we
know that noone wants to access the bus. One can imagine that if the system is
terminated, we do not need to schedule any resources, either, so at this point there
are also only question marks in the schedule. A nice feature of this construction
approach is that we do not have to calculate the WCET of a schedule from scratch

14

P0 :

P1 :

res : ? ?

P0 :

P1 :

res : ? ? P0

· · · · · ·

P0 :

P1 :

res : ? ? P1

· · · · · ·

Figure 3.3: Conflict tree of resource schedule construction

again as the conceptual computations are the same. The blocking or non-blocking of
a task corresponds exactly to the two cases in the execsys,res-formula. More exactly,
we can interpret the conflict tree such that every leave represents a finished idealized
resource schedule and the WCET is just equivalent to the height of the path we
have to go to this schedule. This more detailed construction is sketched in figure
3.4.

Issue 3: Redundant system schedules As already mentioned at the beginning,
we consider all processing units to be equal. Formally, we can define the relation ∼
on system schedules.

Definition 3.2. ∼
Let sys1, sys2 ∈ S be two system schedules. We define that sys1 ∼ sys2 if and only
if there is a bijective processing unit renaming function π : PU → PU such that
π(sys1) = sys2

Lemma 3.2. ∼ is an equivalence relation.

Proof. This obviously holds as the renaming functions are permutations on the set
PU , so there exist the identity, the inverse function and the permutations are closed
under composition.

Now we can derive the following theorem.

Theorem 3.3. Let sys1, sys2 ∈ S be system schedules with sys1 ∼ sys2, then they
lead to the same locally optimal WCET .

Proof. Let res1 be the optimal resource schedule for sys1. As sys1 ∼ sys2, there is
a renaming function π such that π(sys1) = sys2. Now we construct res2 such that

∀t ∈ N : res2(t) = π (res1(t))

15

P0 :

P1 :

res :

P0 :

P1 :

res : ?

P0 :

P1 :

res : ? P0

P0 :

P1 :

res : ? P1

P0 :

P1 :

res : ? P0 P1

P0 :

P1 :

res : ? P0 P1 ?

P0 :

P1 :

res : ? P1 P0

Figure 3.4: Detailed construction of reasonable resource schedules

16

P0 :

P1 :

res : ? P1 P1 ? ? P0 P1 ?

(a) Schedule A

P0 :

P1 :

res : ? P0 P0 ? ? P1 P0 ?

(b) Schedule B

Figure 3.5: Redundant system schedules

Obviously it holds:
WCETsys2,res2 = WCETsys1,res1

So if we have two schedules where just the processing unit names are swapped
as in figure 3.5, we do not have to take both into consideration when looking for
the optimum. One system schedule of each equivalence class is enough to find the
optimal schedule. This brings us to the idea that we can split the construction of
all possible (non-redundant) system schedules into two parts. At first we construct
all possible task partitionings with up to N partitions to define which tasks are
executed on the same processing unit. The concrete assignment from partition to
processing unit can then be done randomly. Additionally, we need all possible task
orders for each partitioning to define the execution order on the processing unit. If
we build our system schedule like this, we always construct one system schedule per
equivalence class.

With all this knowledge, we can derive a first reasonable approach as can be seen
in Algorithm 2.

Data: Tasks: set of Tasks, n: number of processing units
(sysb, resb,WCETb)← (null,null,∞);1

P ← allPartitionings(Tasks, n);2

foreach part ∈ P do3

S ← nonRedundantSystemSchedules(part);4

foreach sys ∈ S do5

R← reasonableResScheduleRepresentants(sys);6

foreach res ∈ R do7

WCET ← WCETsys,res;8

if WCET < WCETb then9

(sysb, resb,WCETb)← (sys, res,WCET);10

end11

end12

end13

end14

return (sysb, resb,WCETb);15

Algorithm 2: First reasonable approach

But now, let us get more concrete regarding the building of system and resource
schedules.

17

P0 :

P1 :

res : P1 P1 P1 P1 P0 P1 P0 P0 P1 P1

(a) Currently best schedule(WCET 10)

Part a:

Part b:

(b) Next regarded partition-
ing(naive WCET 11)

Figure 3.6: Prune a partitioning

3.3 Traversing the search space

In the conceptual approach, we assumed the sets of possible system and resource
schedules as just given. In the reasonable approach, we suggested how and where we
compute those sets. But in the actual implementation we do not want to precompute
the whole set of system schedules for example because this would just be much too
space-consuming. That’s why we now want to talk about iterators because we want
to define how we can iteratively build this set and talk about the traversing order.

3.3.1 Exhaustive iterators

The trivial way to iterate the search space would just be to compute one object at a
time and go one step in the optimization loops deeper. We call this iterator Iterexpart,
Iterexsys and Iterexres for the respective objects of the algorithm.

We already talked about the construction of the resource schedules with the
conflict tree, but we did not say anything yet about how our implementation builds
the partitionings and system schedules.

There are several possibilities to enumerate all possible partitionings of a set of
n objects. We use an algorithm which starts with the partitioning which contains
only one partition with all objects. In further steps, the partitionings become finer
and finer. This has the advantage that when we have two schedules leading to the
sameWCET , we prefer the one with the coarser partitioning as we regard this first.
This means that we possibly achieve a lower number of processing units.

3.3.2 Lower bound operators

As you might already imagine we consider many needless schedules applying this
method because some system schedules or even some partitionings are already guar-
anteed to result in worse WCETs than the currently best found complete schedule.
Also some resource schedules might fulfil this property so that we can prune whole
subtrees of the conflict tree. So we will take a closer look on that now.

For both iterators we can find points where computations can be pruned. Start-
ing with the system schedule we see that whenever the naive WCET of a parti-
tioning(the maximum of the naive WCET sums of tasks in one partition) reaches
the currently best WCET value, we do not have to compute all task permutations
because we already know that we cannot achieve better than the naive WCET. An

18

P0 :

P1 :

res : P1 P1 P1 P1 P0 P1 P0 P0 P1 P1

(a) Currently best schedule(WCET 10)

P0 :

P1 :

P0 :

P1 :

abort!

· · ·

(b) Next conflict tree

Figure 3.7: Prune a subtree

example for this is shown in figure 3.6 Like this, we do not only save the computation
of the system schedules, but also the according computation of all resource schedule
representants belonging to those system schedules.

For the resource schedule iterator, we can use a classical branch-and-bound tech-
nique to step through the tree. So whenever we recognize that during the building of
a resource schedule the current height of the tree reaches the currently best WCET,
we do not traverse the conflict tree further down, so we prune the whole subtree.
See an example for this in figure 3.7. We also see that we can reject subtrees much
earlier when we add the naive rest to the current height of the conflict tree. This
will also give us a hint on how big the outcoming WCETs will be at least.

These mentioned thechniques do not only work for the naive WCET, but for
all lower bounds. Thus, we want to make this operation a bit more generic and
define lower bounds LB on subsets M ∈ P(S × R). This means LB(M) ≤
min

(sys,res)∈M
{WCETsys,res} must always hold. If we have such a lower bound, we

can apply the rule:
LB(M) ≥ WCETb ⇒ PruneM

We can apply this rule on every level of the algorithm, starting from the task set
right up to the resource schedule level. If we now transfer our examples to this
pattern, we get the following.

Definition 3.3. Naive WCET lower bound LBn

Let part be a partitioning.

LBn(part) = max
p∈part

{
∑
τ∈p

τ.nWCET}

LBn(part) is a lower bound on {WCETsys,res|sys ∈ S(part), res ∈ R}, which
means that we can prune all system schedules belonging to the given partitioning
and of course also every resource schedule which could be derived from those sys-
tem schedules. S(part) denotes the set of all derivable system schedules given the
partitioning part.

19

P0 :

P1 :

P2 :

(a) An exemplary schedule

compstart compend #accesses
P0 : 3 3 1
P1 : 4 2 2
P2 : 4 2 2

↓min ↓min ↓sum
bound : 3+ 2+ 5 = 10

(b) The important values

Figure 3.8: Computation of the lower bound LBbp

A big disadvantage of the previous bound is that it neglects all accesses. Thus, if
we have many accesses in the tasks the sum of all accesses gives us a better bound,
but this bound is even a bound on the whole task set. This means, if we reach this
bound, we can abort the whole computation completely. Of course, this bound is
probably very often far away from actual situations. But we can still improve it by
adding the smallest computation times at the start and the end of each processing
unit and contain a bound which respects the task accesses. This brings us to the
lower bound LBbp.

Definition 3.4. Sum of accesses plus the boundary points LBbp

LBbp takes the computation time at the beginning and at the end of each processing
unit and takes the minimum of them which means the time until the first and after
the last access. Then we add the sum of all accesses in our setting and obtain a
lower bound.

This lower bound is illustrated again in figure 3.8. In subfigure 3.8(b) the im-
portant values are listed for the exemplary schedule in 3.8(a). There we see the
computation time at the start (compstart) and at the end (compend) and also the
number of accesses for each processing unit. We add the minima of the computa-
tion time values and the cumulative number of accesses to obtain the value of the
bound. What we explore is that we increased the lower bound of the naive WCET
which is 8 in this example to 10, so we got a more realistic approximation to the
real WCET. This is of course not always the case, but works well if we have lots of
accesses beside the boundary points of each processing unit.

We can also do this computation one abstraction level earlier if we apply it to the
partitions. But then we do not know which task is the first and last on the specific
processing unit, so we have to consider the start and end computation times of all
tasks and take the minimum there. But this will often introduce much pessimism
and thus often be far away from the actual WCET if we consider a concrete schedule.
We can use this lower bound of course anyway if we can predict that every system
schedule of a partitioning will not improve the currently best WCET. But we easily
see that the bigger the set is which we can prune the less often we can apply this
pruning operation.

Another bound is - as already mentioned - the height of a partially finished
resource schedule in addition to the naive rest execution time as already seen in
figure 3.7.

20

P0 :

P1 :

res : ? ? P0 P0 ? ? P0 ? ?

↓
P0 :

P1 :

LBn : 5⇒ No Pruning possible
(a) Bad order

P0 :

P1 :

res : ? P1 P0 P0 ? ? ? ? ?

↓
P0 :

P1 :
LBn : 9⇒ Prune!

(b) Good order

Figure 3.9: Sorting schedules

Definition 3.5. Temporary WCET lower bound LBtr

LBtr = Temporary WCET of respre as LB on {(sys, res)|respre prefix of res}

We can compute the WCET of any schedule. If the schedule is still incomplete,
we do of course not have the actual WCET, but a lower bound for it. So we can
calculate this lower bound during the build of the resource schedule after every
conflict and get increasing lower bounds which might reach our currently best value
so that we can abort the computation of this part of the conflict tree.

3.3.3 Sorting schedules

As the introduced LB operators allow us to prune a lot of the search space, we
want to shape our iteration order in a way which lets us apply this pruning as often
as possible. Figure 3.9 shows a small example where the order of the schedules is
important for the runtime of the algorithm. In general, we could sort the order of all
pairs, but this would be too time- and space-consuming. Therefore, we will just sort
the partitionings and thereafter will just incrementally build the concrete schedules.
To achieve this we have to define a comparison operator for partitionings to obtain a
traversing order as we cannot predict the sequence of considered partitionings with
the set structure which we have at the moment. So in the current situation we want
to define metrics on partitionings. These metrics have to fulfil two conditions. On
the one hand we obviously want the outcoming order allow us to prune a lot of
the search space, but on the other hand the metric has to be computed efficiently
because otherwise the overhead would exceed the bonus won through the smaller
search. So, we have a trade-off between efficiency and effectiveness. The extreme
case for example would be the usage of the actual minimal WCET as metric on
the partitionings as this will probably give us a very good iteration order but to
compute this metric, we have to solve the initial problem itself. So we see that
both conditions have to balance each other. The first idea of an efficient metric
could therefore be the naive WCET LBn as described in definition 3.3. This can be
computed fast and it gives us a hint on how good a concrete schedule can be. But
the obvious disadvantage at this metric is that it neglects all bus accesses.

21

P0 : UBmb(P0) = 3 + 6 = 9

P1 : UBmb(P1) = 4 + 7 = 11

⇒ UBmb = 11

Figure 3.10: Example: maximum blocking metric

Another possibility is the maximum blocking metric WCETmb. Intuitively, the
WCETmb adds all accesses on other processing units to the naive WCET of the
partition under consideration. We obtain an upper bound on the best possible
schedule according to this partitioning with this metric because no processing unit
can be blocked longer than there are accesses on other processing units available as
we regard only reasonable schedules.

Definition 3.6. UBmb

Let part = {p0, . . . , pm} be a partitioning and let nA(Pi) be the total naive access
length occuring on partition Pi.

UBmb(Pi) = WCETnaive(Pi) +
∑

P∈part\{Pi}

nA(P)︸ ︷︷ ︸
other accesses

And finally
UBmb(part) = max

Pi∈part
{UBmb(Pi)}

To get a better intuition of the maximum blocking metric, regard figure 3.10.
Of course we could have also implemented this approach to the field of system and

resource schedules, but we made the experience that the overhead of precomputing
and sorting all of the possible schedules is almost every time much higher than the
gain of execution time through pruning some search space. One particular annoying
fact is that the exhaustive algorithm would prune many of the system schedules
which a sorting approach would have to presort anyway. So a possibility for further
work would be to integrate pruning into the precomputation phase. One would have
to compute an upper bound for system schedules which are already computed and
compare them to lower bounds of partitionings for which we have not calculated the
according system schedules yet. So we could also prune those while precomputing
objects for the sorting phase.

3.4 Evaluation

3.4.1 The test suites

We have build a parameterized random test case generator which gets the following
input:

1. Minimum and maximum number of processing units and tasks

22

2. Minimum and maximum amount of a task’s naive WCET

3. Probability if a task τ has a bus access at time t (∀t = 0, . . . , τ.nWCET)

We generated three test suites of each 100 test cases. The numbers of processing
units were uniformly distributed in the interval [2, 4] whereas the task length is
quadratically distributed on the interval [3, 30] to make smaller naive WCETs more
probable. The access probability for the tree test suites were 10%, 25% or 50%
respectively. Therefore, we call the test suites T10, T25 and T50. We decided for
those parameters to keep the test cases small enough so that we can always evaluate
the exhaustive algorithm. We assume that these heuristics which perform better
than others on these smaller test suite will also perform better on larger settings.
But even though they are quite small, we had to delete some cases out of T50 because
the exhaustive optimization could not handle them in less than 15 minutes. Those
cases mostly had 4 processing units and many long tasks so that the computation
of the resource schedule enlarged the runtime too much.

To compare the different techniques we presented about how to to speed the
exhaustive algorithm we considered two performance indicators. At first of course
the execution time(in milliseconds) to compute the result, but secondly also the
number of schedules which were really computed to see how much of the search
space the technique could prune. We already mentionned that in our implementation
the calculation of a schedule’s WCET is neglectable because this is already done
during the construction of the schedules. Therefore we additionally want to have
a more implementation-independent value than the execution time and thus we
decided for the number of computed schedules. We compared once the exhaustive
algorithm without any pruning to the one which applies the LB operators and to the
approaches which had a sorting step before the actual computation phase. Figure
3.11 lists all presented approaches for the exhaustive optimization, evaluated on T10
and we see that the results of the algorithm which does not prune anything are so
bad compared to the other ones that the bars of the pruning ones’ values appear to
be equal to the zero line. Therefore, figures 3.12, 3.13 and 3.14 just show the pruning
algorithms because it only makes sense to compare those ones to each other. Each
figure shows the evaluation on one of the three test suites. On the first bar, we see
the iterator which does not have a pre-sorting phase, but considers the partitionings
in our default order. All the other bars show the iterators with a pre-computing
step before the actual computation. The name of the bar gives a hint which metric
was used for the sorting. LinearCombo means the combination of both metrics with
each a weight of 50%. Additionally, we simulated an approach which delivers the
best possible order. We achieved this by running the evaluation twice and put the
result of the first run at the first place of the second run’s search space. This means
we found the optimum as early as possible and we want to find out now how much
this optimal order is able to prune in the different test suites. A line in the diagram
indicates the number of schedules which had to be computed in this approach.

We can see that the lower the bus load in a test suite the better the sorting
iterators. When evaluating the test suite T10, the pre-sorting has a high impact
to the execution time of the algorithm. There we find good results earlier and
thus have to compute much fewer schedules which results in a significantly lower

23

25

50

75

100
s

No
Pr
un
ing

No
So
rti
ng

Na
ive
W
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

(a) Execution time in s

5

10

15

20

No
Pr
un
ing

No
So
rti
ng

Na
ive
W
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

(b) Computed schedules times 106

Figure 3.11: Evaluation of the exhaustive optimization on T10

24

500

1000

1500

2000

2500
ms

No
So
rti
ng

Na
ive
W
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

(a) Execution time in ms

500

1000

1500

2000

2500

No
So
rti
ng

Na
ive
W
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

(b) Computed schedules

Figure 3.12: Evaluation of the pruning iterators on T10

2

4

6

8
s

No
So
rti
ng

Na
ive
W
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

(a) Execution time in s

250

500

750

1000

No
So
rti
ng

Na
ive
W
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

(b) Computed schedules times 103

Figure 3.13: Evaluation of the pruning iterators on T25

25

250

500

750
s

No
So
rti
ng

Na
ive
W
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

(a) Execution time in s

50

100

150

No
So
rti
ng

Na
ive
W
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

(b) Computed schedules times 106

Figure 3.14: Evaluation of the pruning iterators on T50

execution time. In every test suite another metric turned out to be the best one for
this setting. But the differences were too small to talk about significance.

We see that our pruning and sorting techniques really work well on the test suites
with a low bus load. We can approximate the best possible order quite exactly.

But a question which arises when regarding the results is why the sorting it-
erators become worse when the bus load becomes higher. One answer is that the
sorting metrics rely on naive assumptions which means they do not take the access
distribution into consideration as this would require to know the system schedule,
but we do only sort on the partitioning level because of the known reasons. An-
other possible answer is that our lower bound operators on partitionings and system
schedules also work on quite naive assumptions. Thus, they become worse if the bus
load becomes higher as those lower bounds are further away from the currently best
WCET . Therefore, pruning is often only possible on the resource schedule level
when applying the operator LBtr. But as we do not sort the resource schedules we
do not profit from sorting at this iteration step. Nevertheless pruning surely still
makes sense. We tried to evaluate the NoPruning-approach to T50, but after an
hour, not even half the test suite was progressed. So we see, we do still profit from
pruning, but not from sorting any more because it does not lead to significantly
more pruning than the default order.

It is also not an option to sort the resource schedules in our implementation as
we would have to precompute them all. The only thing we could prune then, would
be the calculation of the WCET of a given complete schedule. But as already
mentioned earlier, this calculation is already done when constructing the resource
schedule, so we do not really prune anything.

An open challenge here is to construct lower bounds as well as sorting metrics
which also work well for cases where we have a high bus load. We tried to do so,
but one problem was that we have to consider the task order to get more realistic
bounds or at least realistic sorting metrics.

26

Chapter 4

Heuristics

We saw many improvements of the exhaustive optimization approach, but as shown
in figure 4.1 this approach still does not scale to larger problems because the runtime
still grows exponentially. Thus the need of effective and efficient heuristics is obvious
because the search space of the exhaustive algorithm is far too large. Thus we will
now leave the field of optimality and talk about the runtime and effectiveness of
several heuristics in this chapter.

4.1 Consider fewer schedules

Consider again the evaluation of the sorting approaches on T25 in figure 4.2. We
added an additional value describing the number of schedules which were computed
until the optimum was found. This brings to our first idea for a simple heuris-
tic. We can just take an arbitrary approach which we worked out so far and stop
the calculation after a given number of steps. This can be applied on every itera-
tion level of the algorithm, means on partitioning, system schedule and/or resource
schedule level. So we can define for every level a maximum number of steps which
the algorithm should look at. But if we do this, the order in which schedules are
constructed depends on the implementation default order which is not benificial as
we could see in the evaluation of the sorting iterators. Thus, it could be senseful to
first sort the objects and then look at some of the best schedules. Best here means
of course just best with respect to a given metric. This has the disadvantage that
we have to precompute all possible objects and their respective metric values at the
level we want to sort which affects the runtime of this heuristic significantly. And

Tasks Bus load Runtime(s)
10 10% > 10
10 20% > 15
10 50% > 60
10 80% > 600
20 50% > 300

Figure 4.1: Runtime of bigger examples with 4 processing units

27

250

500

750

1000

No
So
rti
ng

Na
ive
W
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

Figure 4.2: Computed schedules (times 103) until the optimum was found

another overhead is the sorting phase, too. We implemented the sorting approach
on the partitioning level and always stopped after the first partitioing. As we only
consider the best partitioning with respect to a given metric, we could also just try
to compute or at least approximate this partitioning on the fly instead of computing
all and searching the best. If we want to minimize our simple metrics of a partition-
ing we could also use an ILP solver [NW88] to solve this problem. The authors of
[NR98] implemented similar problems with an ILP solver.

4.2 On-the-fly construction

The considered heuristic is bad for two reasons. If we sort the partitionings or system
schedules this approach does not scale to larger problems because the precompu-
tation phase is just too time consuming. On the other hand, if we leave sorting
and precomputing out and stop the algorithm after m steps, the iteration order is
bad. Overall, we either have a bad performance when we do sort, or we have a bad
quality when we do not sort. But as we want a heuristic which combines quality
and performance, we have to leave our inflexible pattern and compute schedules in
another way. So there is a need to construct a heuristic which computes a result on
the fly.

The first intuition is that we construct a metric which decides at every iteration
step which task we have to place to the first free cycle. We also implemented the
possibility to place several tasks at once and decide afterwards which combination
was the best. So to say, we can look ahead in the decision tree of the task placement.
This approach is illustrated in figure 4.3. There we have a 2-processor setting with
3 tasks to place. We see the decision after the first task is already placed with a
lookahead of 1 and 2. The calculation of the metric values will be explained in
section 4.3

28

P0 :

P1 :

P0 :

P1 :

value: 8

P0 :

P1 :

value : 10

(a) Lookahead 1

P0 :

P1 :

P0 :

P1 :

P0 :

P1 :

value: 14

P0 :

P1 :

P0 :

P1 :

value: 12

(b) Lookahead 2

Figure 4.3: Incremental task placement

Related work There is already an approach [RAEP07] which computes a
whole schedule on the fly. In this approach, tasks are also placed step by step
to the first free processing unit. The main difference of our system model and
theirs is that they have a dependency graph for the tasks. They always place
the task with the longest transitive dependency chain. So their approach does
not completely fit into our model, but we adapted it as well as we could because
it is one of the few approaches which can be compared to ours. As we do not
have tasks which depend on each other, we adapt their heuristic via placing the
task with the highest naive WCET . In this approach we can easily see that the
distribution of the accesses is neglected when deciding for a task placement, so
we see a possible point of improvement here.

After the placement is finished, we optimize the resource schedule in the way
described in chapter 3. The derived algorithm can be seen in 3. The method

29

FirstTerminatingProc(sys, res) returns the processing unit with the smallest WCRT
in the given setting.

Data: Tasks: set of all tasks, n: number of processors, metsys: metric for
system schedule

sys←"empty schedule";1

while Tasks not empty do2

procfree ← FirstTerminatingProc(sys, res);3

(sysb, τb,metb)← (null,null,∞);4

foreach τ ∈ Tasks do5

systmp ← schedule τ to sys at procfree;6

mettmp ← metsys (systmp);7

if mettmp < metb then8

(sysb, τb,metb)← (systmp, τ,mettmp);9

end10

end11

sys← sysb;12

Tasks← Tasks \ {τb};13

end14

res← such that WCETsys,res is minimal;15

return (sys, res);16

Algorithm 3: On the fly construction of a system schedule

4.3 Metrics

The effectiveness of this heuristic strongly depends on the given metrics with which
we build the system schedule. That is why we will discuss this in the following
pages.

4.3.1 System schedule metrics

Metricconflicts Our goal is to construct metrics which take into consideration the
access distribution because we can use all the information the system schedule de-
livers. Our first idea was to count the number of naive conflicts - i.e. the number of
conflicts in the first naive setting - and add this number to the naive WCRT. Regard
an example for the calculation in figure 4.4. We cannot only regard the number of
naive conflicts because then the sequential schedule would always get the best metric
value and this is not what we want. It is important to mention that a conflict where
m processors are involved counts as m − 1 conflicts because we need at least this
number of steps in the resource schedule to solve the conflict. After evaluating this
metric on several test cases we experienced that we did not only construct a metric,
but also a safe and relatively tight upper bound on the best possible WCET. So we
derive the following theorem proven for a two processor setting.

30

P0 :

P1 :

P2 :

(a) A system schedule

Conflicts: 3
Naive WCET: 8
Sum: 11
(b) Metric calculation

Figure 4.4: Calculation of Metricconflicts

Theorem 4.1. Consider a scenario with two processors. Let sys be a system sched-
ule with a naive WCET of wnaive and c conflicts in the naive scenario. Then there
is a resource schedule res with WCET (sys, res) ≤ wnaive + c.

Proof by induction.
Let c = 0
Then it is obviously clear that there is a res with

WCETsys,res = wnaive ≤ wnaive + 0 = wnaive + c

Suppose the theorem is true for a c ≥ 0(I.H.), prove for c+ 1:
So sys has c+ 1 conflicts in the first naive scenario (no blocking introduced at all)
⇒ ∃t ∈ N where the first conflict is at time t. Solve the conflict by granting the bus
to the first processing unit. Through blocking we get a new situation where we can
consider tow cases.
Case 1: There is no further conflict
⇒ There is obviously a reasonable resource schedule res with

WCET (sys, res) = wnaive + 1 ≤ wnaive + (c+ 1)

Case 2: There is at least one further conflict
Again ∃t′ ∈ N, t′ > t so that the first occuring conflict in this new scenario is at
time t′. Now solve the conflict by granting the bus to the second processing unit.
Now the first processing unit is blocked, thus the offset of the two processing units
at time t′ + 1 is the same as at the beginning at time t′. That is why there are at
most c conflicts in the remaining scenario. The remaining naive WCET is

wnaiver = wnaive − t′ (4.1)

So we can estimate the actual WCET of the rest with

wr
I.H.

≤ wnaiver + c
(4.1)
= wnaive − t′ + c (4.2)

The preliminary schedule has a WCET of

wP = t′ + 1 (4.3)

31

P0 :

P1 :

res : ?

P0 :

P1 :

res : ? P0 P1 ? P0 ?

P0 :

P1 :

res : ? P0 P1 ? P0 ? P1 ? ?

first schedule P0

next conflict schedule P1

Figure 4.5: Alternating resource schedule

So considering the whole schedule we get a WCET of

w =wp + wr
(4.2)

≤ wp + wnaive − t′ + c

(4.3)
= t′ + 1 + wnaive − t′ + c

=wnaive + (c+ 1)

The resource schedule constructed in theorem 4.1 is sketched in figure 4.5.
In all generated test cases for more than two processing units the described bound

was safe, but we did not find a nice way to prove it at a similar level of formalism
as for two processing units. The difference is that the resource schedule cannot be
constructed alternating like described above, but there is also an easy constructive
criterion for the resource schedule to let the bound hold. We just always have to
schedule the processing unit which has been scheduled the least times.

Even if we could not convince every reader that we obtain a safe bound through
this metric and even if there is an artificial example which is not covered by our test
suite where the metric is not a bound, we can though use it as metric and this was
our actual goal. In further contexts we will call this metric metricconflicts. We can
even improve the metric and also tighten the bound by presolving a maximum of m

32

Note 4.1. Alternating resource schedule heuristic resalt
For a given system schedule sys with a naive WCET of n and a total number
of naive conflicts of c, we can construct the resource schedule res due to the
following rule:
Solve every conflict by granting the bus to the processing unit which was pref-
ered the least times when previous conflicts were solved. So we do not count
those points in time where we have a straight-forward decision (no conflict). We
assume and our evaluation confirmed that we can always predict:

WCETsys,res ≤ n+ c

The heuristic’s runtime is in O(WCRTUBb (sys)).

P0 :

P1 :

value: 8 + 3 = 11

P0 :

P1 :

value: 8 + 0 = 8

P0 :

P1 :

value: 9 + 1 = 10

Figure 4.6: metricconflicts with a presolving size of 1

conflicts, calculate the metricconflicts after each solving step and take the minimum
as actual value. An example why this could be helpful is illustrated in figure 4.6.
In the initial setting we have a value of 13 and after one conflict is solved we get a
value of 9, so this might help getting better results when deciding the placement of
a task.

Metricpenalty The last metric punished a long WCRT and a high number of con-
flicts. But when incrementally constructing a schedule we probably do not want that
the first tasks we place to have a short naive WCET and a low number of accesses
such that in the end we have only long tasks with lots of accesses left. This means
many conflicts and/or a high difference between the completion time of different
processing units as we cannot "fill up" critical cycles with small tasks with a low
bus load. So we also want to punish situations where the bus is unused for longer
times to avoid problems when only a few tasks are left. The idea is that the perfect
situation would be that we have one access each cycle which means no conflicts and
a uniform distribution of the accesses. So we might want exactly such schedules.

33

P0 :

P1 :

P2 :

met : 0 1 1 1 2 0 0 0

time
0 1 2 3 4 5 6 7

+0 +1 +1 +1 +2 +0 +0 +0

Figure 4.7: Evaluation of metricpenalty

The idea of the next metric which we call metricpenalty is that we step through every
cycle t and regard the situation on all processing units. Let met be the current value
of our metric (initially 0). We can find three different cases:

1. There is no access at time t. This means wasted time, so we increase met by
1

2. There is exactly one access at time t. This is perfect, so we do not add a
penalty.

3. There are n accesses at time t with n > 1 which means we have n − 1 more
accesses than can be served, so we increase met by n− 1

We evaluate the metric on an example, shown in figure 4.7.

4.3.2 Resource schedule metric

The approach of Algorithm 3 is bad for at least one reason. When doing the task
placement, we look at a naive situation because the offset between task to place and
the ones already placed on other processing units does not need to correspond to the
schedule with the actual best resource schedule. So our intuitive advantage of taking
the access distribution into consideration might decrease due to the naive look at
the setting. So we have to integrate the resource schedule optimization into the task
placement which leads us to Algorithm 4. After we decided for a task placement,
we build the resource Schedule further until the place where there are tasks on all
processing units available. We also see that we can use the resource schedule for the
evaluation of the placement metric. The exact utilization of the different metrics
is explained in subsection 4.3.3. So far, we always optimized the resource schedule
with respect to the WCET . But now we have to refine our definition of optimality
when regarding a schedule where further tasks still have to be placed. We want
to construct a resource schedule such that the schedule stays flexible for further
task placements. If we always consider a schedule where not all tasks are placed
yet the same way as a complete schedule and thus optimize the resource schedule
with respect to the total WCRT we will often not get optimal results. This fact is

34

illustrated in figure 4.8(a). At this example two out of three tasks are already placed
and the resource schedule is build until one processing unit is finished. Thereafter
the last task is placed and one can see that our computed result is far from the
optimal one which we see in figure 4.8(b).

Data: Tasks: set of all tasks, n: number of processing units, metsys,metres:
metrics for system and resource schedule

(sys, res)←"empty schedule";1

while Tasks not empty do2

procfree ← FirstTerminatingProc(sys, res);3

(sysb, τb,metb)← (null,null,null,∞);4

foreach tau ∈ Tasks do5

systmp ← schedule τ to sys at procfree;6

mettmp ← metsys (systmp, res);7

if mettmp < metb then8

(sysb, τb,metb)← (systmp, τ,mettmp);9

end10

end11

sys← sysb;12

res← complete res such that metres is best;13

Tasks← Tasks \ {τb};14

end15

return (sys, res);16

Algorithm 4: On the fly construction of a schedule with integrated resource
schedule

Due to the fact that we do not want to block processing units more than really
needed we define the whole blocking time as metricblocking for a resource schedule.
As this should only be a metric for incomplete schedules we have to make a difference
between the first n − 1 task placements and the last one if we have n tasks. If we
do it like this we can apply the metricblocking for the first n− 1 placements and the
WCRT as metric for the last placement to get the optimal result at least for the last
part of the schedule.

The disadvantage of this approach is that we still have to build the conflict tree
for one resource schedule as we did it in the exhaustive algorithm which means that
we have an exponential worst case runtime for this resource schedule. We have a
heuristic which builds the resource schedule efficiently as described in note 4.1, but
in a further work one could optimize this step of the approach. Our main focus still
relies on the choice of the system schedule.

4.3.3 Utilization of the metrics

We want to compare our metric values in a fair way. If we iteratively place tasks, we
want to estimate how good this placement was. The metrics in the two approaches
are used in a different way. We will explain how the evaluation of the metrics work
for each approach.

35

P0 :

P1 :

P0 :

P1 :

res : P0 P0 P0 P0 P1

P0 :

P1 :

res : P0 P0 P0 P0 P1 P0 ? ? ? ?

Build res

Place last task

(a) Bad resource schedule

P0 :

P1 :

res : P1 P0 P0 P0 P0 ? P0

(b) Optimal result

Figure 4.8: Incremental build of system and resource schedule

P0 :

P1 :

P0 :

P1 :

metabs : 1 + 1 = 2
metnorm : 2

1
= 2

P0 :

P1 :

metabs : 4 + 0 = 4
metnorm : 4

4
= 1

Figure 4.9: Utilization of metricconflicts in the non-integrated approach

36

P0 :

P1 :

res : P1 P1

(a) Situation before placement

P0 :

P1 :

res : P1 P1

metabs : 3 + 1 + 2 = 6
metnorm : 6

3
= 2

(b) Place a task

Figure 4.10: Utilization of metricconflicts in the integrated approach

Non-integrated resource schedule

In general, we evaluate all metrics only at the interval of the won busy time. The
busy time describes the latest point in time where all processing units execute tasks.
We do this as it does not make sense to talk about interferences at cycles where
not all processing units execute tasks. On the other hand, we also do not need to
evaluate the metrics at the parts of the schedule where all processing units have been
busy before the placement as this part and so the metric value stays constant at this
interval. Additionally, we normalize the absolute metric values metabs against this
won busy time and finally obtain the normalized metric value metnorm. Otherwise,
small tasks with a relatively bad metric value would possibly be prefered over long
tasks with a relatively good metric value. This fact is sketched in figure 4.9. We see
that we can place two tasks. One task with a naive WCET of 1 and 1 access and
the other task with a naive WCET of 4 and 3 accesses. If we would use the absolut
metric values, we would get 2 for the first placement as we have a naive WCET of
1 and 1 conflict until the first processing unit is not busy anymore. For the other
placement we would have an absolute metric value of 4 (naive WCET of 4 and 0
conflict). So we would decide for the smaller task. But if additionally normalize the
values against the won busy time - 1 in the first case, 4 in the second one -, then we
decide for the larger task which leads to a better overall solution.

Integrated resource schedule

The main difference of the approach which builds the resource schedule integrated
with the task placement is that we can use more information when evaluation the
metric for the system schedule. When we place a task at time t, we know about
the resource schedule until time t− 1. So we have to evaluate the metric only from
time t on and we have to consider the actual task offsets which are introduced by
the resource schedule. After this, we can add the length of the resource schedule
to the calculated metric value to obtain a more realistic value. This value is then
again normalized as described for the other approach. Figure 4.10 sketches again
the utilization. We have a naive rest WCET of 3 and 1 conflict in the time time
interval which we are interested in. This is the time from 2 (res is build) until 5
(all processing units busy). Finally, we add the length of res which is 2 as already
mentionned and obtain a total absolute value of 6 which we normalize in a further

37

10

20

30

40
%

NW
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

Ra
nd
om

(a) T10

10

20

30

40
%

NW
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

Ra
nd
om

(b) T25

10

20

30

40
%

NW
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

Ra
nd
om

(c) T50

Figure 4.11: Percentual error of "Taking-One-Partitioning" approach

step as already described earlier.

4.4 Evaluation

We have again the same test suites as for the evaluation of the exhaustive optimiza-
tion to be able to compare the results. The definition of the test suites was explained
in subsection 3.4.1.

4.4.1 Consider fewer schedules

At first, we want to take a look at the approach which always just considers the
first partitioning. We want to compare two values. At first, we want to know

38

50

100

150

200
ms

De
fau
lt

NW
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

Ra
nd
om

(a) T10

100

200

300

400
ms

De
fau
lt

NW
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

Ra
nd
om

(b) T25

500

1000

1500

2000
ms

De
fau
lt

NW
CE
T

M
ax
Bl
oc
k

Lin
ea
rC
om
bo

Ra
nd
om

(c) T50

Figure 4.12: Execution time of "Taking-One-Partitioning" approach (in ms)

39

how effective our heuristic, so figure 4.11 shows the average relative error of the
outcoming result compared the the optimal one. Figure 4.12 shows the execution
times of the different approaches.

The different bars stand for the approaches on how to choose this one partitioning
which we want to consider. The first three are captioned with the metric with which
are used to sort the set of precomputed partitionings. LinearCombo means here a
linear combination of both NWCET and MaxBlock with each a weight of 50%. The
bar indicated with "Random" describes exactly what one might expect, it randomly
chooses an arbitrary partitioning. We also evaluated the approach which takes the
first partitioning of the default implementation order, but there the relative error
was so high that we did not list it in the diagrams. This comes from the fact that
the algorithm which iterates all possible partitionings for a given task set and a
given number of processing units starts with the partitionings which has just one
partition with every task in it as already described in chapter 3. So we always get
the sequential WCET in this scenario. The dashed parts of the bars indicate the
time which was consumed by the precomputation- and search-phase.

So, what we see is that the naive WCET is a really good metric to approximate
the quality of a partitioning. But we also have to consider the fact that we still com-
pute and consider every possible system schedule according to this one partitioning.
And for every system schedule we build the whole conflict tree to get the optimal
resource schedule. This means that we can of course get really effective heuristics
here and the evaluation agrees with that, but we still traverse much of the search
space which makes the heuristic not scalable which is underlined by figure 4.12. The
runtime grows significantly when the access concentration becomes larger.

4.4.2 On-the-fly construction

Non-integrated resource schedule

Now let us take a closer look at the technique which incrementally builds the system
schedule and then finally at the end of the algorithm an optimal resource schedule
for this given system schedule is computed. Figure 4.13 and 4.14 show the results
of this evaluation. We considered three settings in our evaluation. The first two
use the metrics described in section 4.3 in the chapter Heuristics. The bars are
captioned with Penalty for the metricpenalty and NumConf for the metricconflicts.
The third bar captioned with Length stands for an algorithm which is similar to
the one described in [RAEP07]. As already mentionned earlier we assume that we
can get better results than that as we take the access distribution of the tasks into
consideration.

We see that increasing the lookahead leads to significantly better results, but
on the other hand also to much higher execution times. The two metrics which
we constructed behave quite similarly, the metricconflicts still perform a bit better.
Overall, the comparison of the three metrics comes to the same result no matter
which test suite we regard. Although the average error becomes higher when we
increase the bus load, the win of precision is similar over all test suites. This is
probably due to the fact that we build the resource schedule in the end. The

40

1

2

3
%

Pe
na
lty

Nu
mC

on
f

Le
ng
th

• LA1 • LA2 • LA3

(a) T10

1

2

3
%

Pe
na
lty

Nu
mC

on
f

Le
ng
th

• LA1 • LA2 • LA3

(b) T25

1

2

3

4

5
%

Pe
na
lty

Nu
mC

on
f

Le
ng
th

• LA1 • LA2 • LA3

(c) T50

Figure 4.13: Relative error of task placement without integrated resource schedule

41

50

100

150

200

250
ms

Pe
na
lty

Nu
mC

on
f

Le
ng
th

• LA1 • LA2 • LA3

(a) T10

50

100

150

200
ms

Pe
na
lty

Nu
mC

on
f

Le
ng
th

• LA1 • LA2 • LA3

(b) T25

50

100

150
ms

Pe
na
lty

Nu
mC

on
f

Le
ng
th

• LA1 • LA2 • LA3

(c) T50

Figure 4.14: Execution time of task placement without integrated resource schedule

42

advantage of our metrics is that they take the access distribution into consideration,
but if we always consider naive scenarios, then this advantage possibly becomes
smaller when we already placed many tasks. This problem is especially high when
we have a high bus load.

Integrated resource schedule

We suppose that the disadvantage just described is eased when constructing the
resource schedule in parallel. Figure 4.15 and 4.16 show the results of the integrated
approach with the different metrics.

The results of the integrated approach comparing the three different placement
metrics do quite coincide with the evaluation before. But we have a higher percentual
error, especially in T50. The reason for this is that we can lose a lot of precision
when we try to optimize the resource schedule when not all tasks are placed yet.
We do not really save time when we build the resource schedule in the integrated
version because the conflict tree is still built completely after every placement. So
the runtime of the resource schedule optimization is the same for each approach.

Thus, there are two open tasks for future work. On the one hand, one could
simplify the resource schedule heuristic to obtain a better runtime which makes the
approach more scalable. On the other hand, one could also try to find more effective
resource schedule metrics so that the outcoming percentual error decreases. In both
cases the quotient of quality and time would increase.

4.4.3 Alternating resource schedule heuristic

We already talked about an alternative resource schedule heuristic in note 4.1. As
the results of the integrated on-the-fly heuristic were not as good as we expected
when we use the metricblocking for building the resource schedule, we evaluated the
same approach with this alternative resource schedule heuristic, too. The results are
shown in figure 4.17(a). As the Length-Heuristic provided terrible results with this
resource schedule construction (up to 85% average error), we do not list it again in
this figure. Additionally, we only show the results for the LA2-approach. If we only
take a lookahead of 1, the results are similarly bad as the one of the Length-heuristic.
But the approach seems to significantly profit from increasing the lookahead. The
results for the two different system schedule metrics were nearly identical, so we do
not list them both again.

The execution times for the different test suites are listed in figure 4.17(b). We
have a much lower runtime than with the previous approaches and the quality of
the results are equal or even better in some cases. It is also worth mentioning that
this heuristic approach is the only one which scales to larger problems. The task
placement as well as the resource schedule construction have polynomial runtime.

43

1

2

3
%

Pe
na
lty

Nu
mC

on
f

Le
ng
th

• LA1 • LA2 • LA3

(a) T10

1

2

3

4

5
%

Pe
na
lty

Nu
mC

on
f

Le
ng
th

• LA1 • LA2 • LA3

(b) T25

3

6

9

12
%

Pe
na
lty

Nu
mC

on
f

Le
ng
th

• LA1 • LA2 • LA3

(c) T50

Figure 4.15: Relative error of task placement with integrated resource schedule

44

50

100

150

200
ms

Pe
na
lty

Nu
mC

on
f

Le
ng
th

• LA1 • LA2 • LA3

(a) T10

50

100

150
ms

Pe
na
lty

Nu
mC

on
f

Le
ng
th

• LA1 • LA2 • LA3

(b) T25

50

100

150
ms

Pe
na
lty

Nu
mC

on
f

Le
ng
th

• LA1 • LA2 • LA3

(c) T50

Figure 4.16: Execution time of task placement with integrated resource schedule

45

2

4

6

8
%

T 1
0

T 2
5

T 5
0

(a) Relative average error

15

30

45

60
ms

T 1
0

T 2
5

T 5
0

(b) Execution time

Figure 4.17: Task placement with integrated alternating resource schedule

4.5 Conclusion
Now we have presented many different heuristics and one might ask the question
which one is te best. The answer is as often: It depends! We have seen that different
approaches reach a different quality within a particular amount of time. Thus, the
decision which approach to take depends on the desired quality as well as the desired
runtime. We assume that the quality of our heuristics is similar when evaluating
them on larger examples. We can of course not provide evidence for this because
searching for the actual optimal result would last too long. But if our assumption
holds, we may define a quotient q of quality and runtime to obtain a comparable
value of all approaches. More exactly, the measurement works like this.

q =
Quality
Runtime

=
1

Error

Runtime
(4.4)

Error means the percentual average increase of the optimal WCET . If for example
the WCET was increased by 4%, the error value is 1, 04. Therefore, the optimal
quality is 1. Figure 4.18 describes the values for quality and runtime of the different
approaches. Integrated OTF 1 describes the integrated approach where the resource
schedule was optimized with respect to metricblocking. Integrated OTF 2 describes
the same approach with the alternative resource schedule constructon. We assume
that the runtime and like this the quotient becomes much worse for bigger examples
with the exception of the last approach listed as this is the only approach which has
polynomial runtime for the construction of both system and resource schedule.

46

Approach T10 T25 T50

Best exhaustive 1 1 1
Best take-one-part 1 1

1.01
1

1.015

Non-Integrated OTF 1
1.01

1
1.02

1
1.03

Integrated OTF 1 1
1.01

1
1.03

1
1.06

Integrated OTF 2 1
1.013

1
1.032

1
1.063

(a) Quality

Approach T10 T25 T50

Best exhaustive 200 4000 500000
Best take-one-part 100 300 1500
Non-Integrated OTF 100 50 150
Integrated OTF 1 50 40 100
Integrated OTF 2 45 20 17

(b) Runtime

Approach T10 T25 T50

Best exhaustive 0.005 0.00025 0.000002
Best take-one-part 0.01 0.0033 0.00066
Non-Integrated OTF 0.0099 0.02 0.0065
Integrated OTF 1 0.02 0.025 0.0094
Integrated OTF 2 0.022 0.048 0.055

(c) Quotient

Figure 4.18: Quality vs. runtime

47

48

Chapter 5

Future work

5.1 Concrete realization of a model
As the attentive reader already noticed, we did several assumptions to our model
which influenced further design decisions of algorithms and heuristics.

A straight-forward concretization of our system model could be a system fulfilling
the following properties.

• Tasks are single-traced in the sense of control flow, so there are no conditional
branches

• Bus accesses allow preemption

• If a task on a particular core is blocked, the whole state of the core stays
unchanged which leads to timing compositionality

• Bus and processing units start at time 0

• Bus cycle as well as the cycles of the processing units have equal length and
are synchronized

• The resource schedule can be chosen freely
As we only want to consider finitely many tasks with finite length, this is
possible with finite memory

5.2 Non-preemptive tasks
We made the assumption that the accesses of our tasks are preemptive which lead
us to the term of reasonability as introduced in definition 3.1. If we do not allow
preemption any more, several things could go wrong. We could possibly miss the
optimal schedule if we just consider reasonable resource schedules with our reason-
ability definition. If we say we do not allow preemption this means that accesses
really must not be preempted. If an access is granted the schedule must ensure that
this access can be finished, too. One example which illustrates the loss of optimality
in the other case is shown in figure 5.1 where we have on the one hand the optimal

49

P0 :

P1 :

res : P0 P0 P0 P0 P0 P1 ? ? ? ?

(a) Optimal "reasonable" schedule

P0 :

P1 :

res : P1 P1 P0 P0 P0 P0 P0 ? ? ?

(b) Really optimal schedule

Figure 5.1: Non-preemptive accesses

P0 :

P1 :

res : ? P1 P0 P1 P0 P1 P0 P1 P0 P1

Figure 5.2: Infinite "reasonable" schedule

schedule within our reasonability definition and on the other hand the really optimal
result.

We can also consider a different scenario of non-preemptive accesses. If we would
only say that an access which is not completely finished within its length just has
to start at its beginning again than we can always find an optimal schedule within
our reasonability. If we have a non-reasonable schedule then a schedule which starts
the accesses at the non-reasonable points and does not complete them leads to the
same behaviour. But in this scenario we cannot predict that a reasonable resource
schedule leads to a finiteWCET of the system because it is possible that two access
interrupt each other in a way such that they are restarted again and again. Figure
5.2 sketches such a schedule. We actually have two accesses, each of length 2, but
as the resource schedule alternates between them, they have to restart from scratch
again and again.

We can easily fix this problem by changing our definition of reasonability to the
following one.

Definition 5.1. Reasonabilitynon−preemptive
A resource schedule res is reasonablenon−preemptive if and only if:
∀t ∈ N: Access σ with a naive length of l and a start time of t is blocked

⇒ ∃ access σ′ with start time t′ ∈ [t, t+ l) such that σ′ is not blocked

This definition allows us to interrupt or block accesses if this is needed as well as
it prevents from alternating restarting of accesses which leads to infinite execution
times. So if we adapt our algorithm to this term of reasonability, we can easily
handle non-preemptive accesses in our model.

50

tr1 :

tr2 :

tr3 :

τ :

Figure 5.3: Merge by simple overlay

tr1 : c1 σ1 c2

tr2 : c1 σ1 c2

tr3 : c1 σ1 c2 σ2

τ : c1 σ1 c2 σ1

Figure 5.4: Merge by full-aligned overlay

5.3 Allow conditional branches
Another important question is how can we now let branching tasks fit into our model
and like this into our analysis? If we want to stay sound, we have to consider all
feasible traces. But as analysing all possible execution traces would be too time-
consuming, we define merge-operators ME

ME : P(Traces)→ Tasks

which takes n traces tri ∈ Traces, i = 1, . . . , N as input and computes a task
τ ∈ Tasks such that property (5.1) is always fulfilled.

∀(sys, res) ∈ S ×R ∀i = 1, . . . , N : WCETsys,res(tri) ≤ WCETsys,res(τ) (5.1)

There are several ways to define such merge-operators. We will present three of
them.

Overlapping merge

Intuitively the first operator just overlays the traces because formally we place an
access at time t if and only if there is an access at time t in one of the traces. This
merging step is illustrated in figure 5.3. Tis can introduce pessimism as there might
be an infeasible sequence of bus accesses.

Align all components

Another possibility is to enumerate the computation as well as te access blocks.
Then we can identify according components and align them before we do again
overlay the traces. This procedure is shown in figure 5.4 with the same traces as in
the last example.

51

τ1 : σ1

τ2 : σ1

τ3 : σ1 σ2

τ : σ1 σ2

Figure 5.5: Merge by access-aligned overlay

Align the accesses

We can easily recognize that the last merge operator has some big disadvantages.
When we align the last access σ3, we see it is not needed that the last access is
placed so late. Furthermore, we do not need to align computation time blocks. If
a trace’s access is finished although the merged task’s access is not, it should be
allowed that the trace can start with its computation block as it does not matter if
the bus is granted in this time or not. This means that it is also enough to align
the accesses and then do the overlay step as shown in figure 5.5. We will stay sound
with this merge-operator and the outcoming task will never have a longer WCET
than the task computed with the full-aligned overlay merge.

Of course all those merge operators introduce some pessimism. Either we con-
struct an infeasible sequence of accesses or we increase the naiveWCET or possibly
even both. But as we are mostly interested only in heuristic schedules anyway, there
might also be an unsafe merge-operator which leads to better results. Therefore this
is one open point of possible improvements.

5.4 Less granular resource schedules
We made the assumption that we can construct our resource schedule as exact as
we need to. But it might be the case that the hardware does only allow periodic
schedules. There again our definition of reasonability will keep us away from the
optimal result as can be seen in figure 5.6.

The example considers a scenario where every processing unit has one time block
per period. The length and the order of those blocks are variable. After a period
is finished, the following period behaves of course exactly the same. This allows
only a few reasonable resource schedules and we might also consider cases where
no reasonable resource schedules are possible like in figure 5.7. In this example, we
make the only available reasonable decisions until point in time 4. But those decision
already defined the periodic schedule as the first period is already finished. So we
cannot vary the further points in time any more which leads to a non-reasonable
decision at the last two blockings of P0. So we see that there is no reasonable
schedule possible.

The general problem here is that every decision in the beginning affects interfer-
ences in the end, so we can only decide if the decision was optimal when we have
completed the schedule.

52

P0 :

P1 :

res : P0 P1 P1 P0 P1 P1 P0 P1 P1 P0 P1 P1

(a) Optimal "reasonable" schedule

P0 :

P1 :

res : P0 P0 P0 P0 P0 P1 P1 P1 P1 P1

(b) Really optimal schedule

Figure 5.6: Periodic resource schedules

P0 :

P1 :

res : P0 P1 P1 P0 P1 P1 P0 P1 P1 P0 P1 P1

Figure 5.7: No reasonable periodic resource schedule possible

53

54

Chapter 6

Summary

We introduced and evaluated many things, so we want to give a short summary
at the end of this thesis. In the very beginning, we adapted the work-conserving
property which is characteristic for dynamic arbitrations to our TDMA arbitration.
This led us to the term of reasonability. In the further sections, we introduced
some techniques on how to speed up the exhaustive optimization algorithm to find
an optimal schedule. We saw that we can reach a significant speedup when the
bus load stays low. But the main goal of the thesis was to construct effective and
efficient heuristics to approximate the optimal schedule. We saw that we can reach
good results if we take the access distribution into consideration when deciding
how to place the tasks in a system schedule. We characterized settings where our
heuristics performed better than another heuristic which did not consider accesses
at this part of their heuristic. We also saw a short overview which should ease
the decision about which one of the presented approaches to take. And finally, we
provided a brief outlook on how to realize a concrete system to fit into our abstract
model.

55

Bibliography

[Amd67] Amdahl, Gene M.: Validity of the single processor approach to achiev-
ing large scale computing capabilities. In: Proceedings of the April 18-20,
1967, spring joint computer conference. New York, NY, USA : ACM,
1967 (AFIPS ’67 (Spring)), 483–485

[FKY08] Funaoka, Kenji ; Kato, Shinpei ; Yamasaki, Nobuyuki: Work-
Conserving Optimal Real-Time Scheduling on Multiprocessors. In:
Proceedings of the 2008 Euromicro Conference on Real-Time Systems.
Washington, DC, USA : IEEE Computer Society, 2008 (ECRTS ’08). –
ISBN 978–0–7695–3298–1, 13–22

[FSS07] Fedorova, Alexandra ; Seltzer, Margo ; Smith, Michael D.: Im-
proving Performance Isolation on Chip Multiprocessors via an Operating
System Scheduler. In: Proceedings of the 16th International Conference
on Parallel Architecture and Compilation Techniques. Washington, DC,
USA : IEEE Computer Society, 2007 (PACT ’07). – ISBN 0–7695–2944–
5, 25–38

[GJ90] Garey, Michael R. ; Johnson, David S.: Computers and Intractability;
A Guide to the Theory of NP-Completeness. New York, NY, USA : W.
H. Freeman & Co., 1990. – ISBN 0716710455

[GRG11] Grund, Daniel ; Reineke, Jan ; Gebhard, Gernot: Branch Tar-
get Buffers: WCET Analysis Framework and Timing Predictabil-
ity. In: Journal of Systems Architecture 57 (2011), Nr. 6, 625–
637. http://dx.doi.org/10.1016/j.sysarc.2010.05.013. – DOI
10.1016/j.sysarc.2010.05.013. – ISSN 1383–7621

[HE05] Hamann, Arne ; Ernst, Rolf: TDMA Time Slot and Turn Optimiza-
tion with Evolutionary Search Techniques. In: Proceedings of the con-
ference on Design, Automation and Test in Europe - Volume 1. Wash-
ington, DC, USA : IEEE Computer Society, 2005 (DATE ’05). – ISBN
0–7695–2288–2, 312–317

[NR98] Narasimhan, M. ; Ramanujam, J.: Improving the computational
performance of ILP-based problems. In: Proceedings of the 1998
IEEE/ACM international conference on Computer-aided design. New
York, NY, USA : ACM, 1998 (ICCAD ’98). – ISBN 1–58113–008–2,
593–596

56

http://dx.doi.org/10.1016/j.sysarc.2010.05.013

[NW88] Nemhauser, George L. ; Wolsey, Laurence A.: Integer and combi-
natorial optimization. New York, NY, USA : Wiley-Interscience, 1988.
– ISBN 0–471–82819–X

[PSC+10] Pellizzoni, Rodolfo ; Schranzhofer, Andreas ; Chen, Jian-Jia ;
Caccamo, Marco ; Thiele, Lothar: Worst case delay analysis for
memory interference in multicore systems. In: Proceedings of the Con-
ference on Design, Automation and Test in Europe. 3001 Leuven, Bel-
gium, Belgium : European Design and Automation Association, 2010
(DATE ’10). – ISBN 978–3–9810801–6–2, 741–746

[RAEP07] Rosen, Jakob ; Andrei, Alexandru ; Eles, Petru ; Peng, Zebo: Bus
Access Optimization for Predictable Implementation of Real-Time Ap-
plications on Multiprocessor Systems-on-Chip. In: Proceedings of the
28th IEEE International Real-Time Systems Symposium. Washington,
DC, USA : IEEE Computer Society, 2007 (RTSS ’07). – ISBN 0–7695–
3062–1, 49–60

[RGG+12] Radojković, Petar ; Girbal, Sylvain ; Grasset, Arnaud ;
Quiñones, Eduardo ; Yehia, Sami ; Cazorla, Francisco J.: On the
evaluation of the impact of shared resources in multithreaded COTS pro-
cessors in time-critical environments. In: ACM Trans. Archit. Code Op-
tim. 8 (2012), Januar, Nr. 4, 34:1–34:25. http://dx.doi.org/10.1145/
2086696.2086713. – DOI 10.1145/2086696.2086713. – ISSN 1544–3566

[SCT10] Schranzhofer, Andreas ; Chen, Jian-Jia ; Thiele, Lothar: Timing
Analysis for TDMA Arbitration in Resource Sharing Systems. In: Pro-
ceedings of the 2010 16th IEEE Real-Time and Embedded Technology
and Applications Symposium. Washington, DC, USA : IEEE Computer
Society, 2010 (RTAS ’10). – ISBN 978–0–7695–4001–6, 215–224

[SPC+11] Schranzhofer, Andreas ; Pellizzoni, Rodolfo ; Chen, Jian-Jia ;
Thiele, Lothar ; Caccamo, Marco: Timing Analysis for Resource
Access Interference on Adaptive Resource Arbiters. In: Proceedings of
the 2011 17th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium. Washington, DC, USA : IEEE Computer Society,
2011 (RTAS ’11). – ISBN 978–0–7695–4344–4, 213–222

[TFW00] Theiling, Henrik ; Ferdinand, Christian ; Wilhelm, Reinhard: Fast
and Precise WCET Prediction by Separate Cache and Path Analyses.
In: Real-Time Systems 18 (2000), May, Nr. 2/3

[WAB+10] Wilhelm, Reinhard ; Altmeyer, Sebastian ; Burguière, Claire ;
Grund, Daniel ; Herter, Jörg ; Reineke, Jan ; Wachter, Björn ;
Wilhelm, Stephan: Static Timing Analysis for Hard Real-Time Sys-
tems. In: VMCAI, Springer Verlag, 2010, S. 3–22

[WEE+08] Wilhelm, Reinhard ; Engblom, Jakob ; Ermedahl, Andreas ; Hol-
sti, Niklas ; Thesing, Stephan ; Whalley, David ; Bernat, Guillem

57

http://dx.doi.org/10.1145/2086696.2086713
http://dx.doi.org/10.1145/2086696.2086713

; Ferdinand, Christian ; Heckmann, Reinhold ; Mitra, Tulika ;
Mueller, Frank ; Puaut, Isabelle ; Puschner, Peter ; Staschulat,
Jan ; Stenström, Per: The Worst-case Execution Time Problem—
Overview of Methods and Survey of Tools. In: ACM Transactions on
Embedded Computing Systems (TECS) 7 (2008), Nr. 3. http://dx.
doi.org/10.1145/1347375.1347389. – DOI 10.1145/1347375.1347389

[WGR+09] Wilhelm, Reinhard ; Grund, Daniel ; Reineke, Jan ; Schlickling,
Marc ; Pister, Markus ; Ferdinand, Christian: Memory Hierarchies,
Pipelines, and Buses for Future Architectures in Time-critical Embedded
Systems. In: IEEE Transactions on CAD of Integrated Circuits and
Systems 28 (2009), July, Nr. 7, S. 966–978. http://dx.doi.org/10.
1109/TCAD.2009.2013287. – DOI 10.1109/TCAD.2009.2013287

[WT06] Wandeler, Ernesto ; Thiele, Lothar: Optimal TDMA time slot and
cycle length allocation for hard real-time systems. In: Proceedings of
the 2006 Asia and South Pacific Design Automation Conference. Pis-
cataway, NJ, USA : IEEE Press, 2006 (ASP-DAC ’06). – ISBN 0–7803–
9451–8, 479–484

[ZBF10] Zhuravlev, Sergey ; Blagodurov, Sergey ; Fedorova, Alexan-
dra: Addressing shared resource contention in multicore processors via
scheduling. In: Proceedings of the fifteenth edition of ASPLOS on Archi-
tectural support for programming languages and operating systems. New
York, NY, USA : ACM, 2010 (ASPLOS XV). – ISBN 978–1–60558–
839–1, 129–142

58

http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1109/TCAD.2009.2013287
http://dx.doi.org/10.1109/TCAD.2009.2013287

	Introduction
	Motivation
	Timing analysis
	Multi-cores

	System Model
	Tasks
	System schedule
	Resource schedule
	WCET
	Challenge
	Cyclic dependency between system and resource schedule

	Optimization Algorithm
	Complexity
	Conceptual approach
	Traversing the search space
	Exhaustive iterators
	Lower bound operators
	Sorting schedules

	Evaluation
	The test suites

	Heuristics
	Consider fewer schedules
	On-the-fly construction
	Metrics
	System schedule metrics
	Resource schedule metric
	Utilization of the metrics

	Evaluation
	Consider fewer schedules
	On-the-fly construction
	Alternating resource schedule heuristic

	Conclusion

	Future work
	Concrete realization of a model
	Non-preemptive tasks
	Allow conditional branches
	Less granular resource schedules

	Summary
	Bibliography

