
Sierra: A SIMD Extension for C++
Roland Leißa Immanuel Haffner Sebastian Hack

Compiler Design Lab, Saarland University
{leissa, haffner, hack}@cs.uni-saarland.de

Nowadays, SIMD hardware is omnipresent in computers.
Nonetheless, many software projects make hardly use of SIMD in-
structions: Applications are usually written in general-purpose lan-
guages like C++. However, general-purpose languages only pro-
vide poor abstractions for SIMD programming enforcing an error-
prone, assembly-like programming style. An alternative are data-
parallel languages. They indeed offer more convenience to target
SIMD architectures but introduce their own set of problems. In par-
ticular, programmers are often unwilling to port their working C++
code to a new programming language.

In this paper we present Sierra: a SIMD extension for C++. It
combines the full power of C++ with an intuitive and effective way
to address SIMD hardware. With Sierra, the programmer can write
efficient, portable and maintainable code. It is particularly easy to
enhance existing code to run efficiently on SIMD machines.

In contrast to prior approaches, the programmer has explicit
control over the involved vector lengths.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming

Keywords C++, SIMD, vectorization

1. Introduction
SIMD instructions (single instruction, multiple data) [8] allow to
process one operation on multiple data simultaneously. SIMD hard-
ware usually provides a special SIMD register file along with ap-
propriate instructions to operate on these registers. We call the num-
ber of elements which fit into a SIMD register the vector length.
Heavy data-parallel applications can be sped up by a factor of that
vector length. However, leveraging SIMD instructions in software
is a complex venture. Usually, data structures and hence the core
algorithms working on them have to be adapted in order to exploit
SIMD effectively [34, 35].

For example, the following Vec3 type is used in many graphics
applications:
struct Vec3 { float x, y, z; };

It is inefficient for SIMD hardware to fetch several logically con-
secutive x-elements in parallel when using a traditional array of
structures (AoS, see Figure 1a) because the x-elements are physi-
cally scattered in memory. When using the structure of array layout
(SoA, see Figure 1b) we can exploit efficient vector loads instead.
However, in a loop over an SoA, which needs to processes x-, y- and
z-elements, the loop must maintain three pointers: One for each el-
ement. Each iteration increments these pointers by the desired vec-
tor length. Another alternative is to inflate the original Vec3 type by
the desired vector length and group this new type in an array. This

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WPMVP ’14, February 16, 2014, Orlando, Florida, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2653-7/14/02. . . $15.00.
http://dx.doi.org/10.1145/2568058.2568062

x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 x5 y5 z5 x6 y6 z6 x7 y7 z7

(a) Array of Structures (AoS)

x0 x1 x2 x3 x4 x5 x6 x7 . . . y0 y1 y2 y3 y4 y5 y6 y7 . . . z0 z1 z2 z3 z4 z5 z6 z7 . . .

(b) Structure of Arrays (SoA)

x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3 x4 x5 x6 x7 y4 y5 y6 y7 z4 z5 z6 z7

(c) Hybrid Structure of Arrays (Hybrid SoA)

Figure 1. Different array layouts with vector length 4 for a struct
with three members: x, y and z

0 8 7 1

2 8 7 3

2 5 4 3

int varying(4) v = {0, 8, 7, 1};

if (v < 3) v += 2;

else v -= 3;

Figure 2. Automatic masking in conditional code

layout is called hybrid SoA (see Figure 1c) [12]. Now, each group
of x-, y- and z-elements lie at constant offsets within one inflated
Vec3 instance. Hence, said loop must only maintain one pointer.
Moreover, this layout provides better data locality; all needed data
within one iteration lies in one chunk of memory.

Another problem is to actually write SIMD code. In order to
emulate classic scalar control-flow constructs on SIMD hardware, a
SIMD operation must not be performed on all elements of a SIMD
vector. Therefore, operations must be masked. Manually writing
this masking code is extremely cumbersome and error-prone as it
enforces an assembly-like programming style.

Data-parallel languages perform this masking automatically.
However, when using such languages programmers are required to
split their performance-critical code off the main application (often
written in general-purpose languages like C++) into a specialized
kernel language (like OpenCL). This schism causes major inconve-
niences for the programmer: First, building the interface between
both languages is a tedious endeavor. Furthermore, logical func-
tionality needed in both parts of the program must be implemented
twice using two different languages—each one with its own pecu-
liarities. Additionally, most data-parallel languages do not provide
any features which help the programmer to build SIMD-friendly
data structures. Finally, porting existing C++ code to a new lan-
guage is a major effort for a project. Therefore, many programmers
hesitate to adopt such kernel languages.

In this paper we present Sierra: a SIMD extension for C++. With
Sierra the programmer is not only able to freely mix “normal” and
data-parallel kernel code within the same language, he also gets
fine-grained control over vectorization lengths.

Sierra’s key components are vector types. The programmer can
use these types via the keyword varying. Standard operators are
overloaded to also work on such vectors:
int varying (4) a = {0, 1, 2, 3};
int varying (4) b = {2, 4, 8, 10};
int varying (4) c = a + b; // 2, 5, 10, 13

Moreover, the programmer can use the varying type constructor to
recursively inflate simple derived types. The type Vec3 varying(4)

has the following layout:
x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3

These types can be used as building blocks to create more advanced
data structures like the aforementioned hybrid SoA layout. Addi-
tionally, the varying type constructor can be tightly integrated with
C++ templates. This allows a C++ programmer to create sophisti-
cated, generic, SIMD-friendly data structures.

Most importantly, the programmer can explicitly trigger code
vectorization by using vectors in control-flow-dependent expres-
sions. The condition v < 3 in Figure 2 is of vector type. Thus,
Sierra enters a special SIMD mode. As the condition only holds for
the first and fourth element, v += 2 is only performed for the first
and fourth element of v. We also say, the first and the fourth lanes
are active. The other two lanes are inactive. Analogously, v -= 3 is
only applied to the second and third element of v.

1.1 Contributions
This paper makes the following contributions:

• We present in detail our extension and give a feel how Sierra
integrates with the rest of C++. (Section 3). A full discussion is
due to the complexity of C++ beyond the scope of the paper.
• As a case study we sketch how to implement a volume ray caster

in Sierra (Section 2).
• In our experiments, we demonstrate that our prototype imple-

mentation is able to speed up applications by 2x to 5x on SSE
and by 2.5x to 7x on AVX compared to the scalar versions (Sec-
tion 5).

2. A Volume Ray Caster in Sierra
As an introductory example, we implement a volume ray caster [2]
in Sierra. With volume ray casting, we visualize a 3D volumetric
data set by shooting rays from the camera through each pixel of
the to-be-rendered image. We then march each ray which hits the
volume and accumulate found voxel data along the ray. Therefore,
we need—additionally to the Vec3 data type from Section 1—a Ray

type:

struct Ray { Vec3 origin , dir; };

First, we sketch the ordinary scalar version. Then, we demon-
strate how to use Sierra for vectorization.

2.1 A Scalar Volume Ray Caster
Render. As a first step, we set up a loop nest which iterates over
all pixels of the target image (see Figure 3a). Then, we generate an
appropriate ray for the current pixel and invoke raymarch. Finally,
we write the computed value to image.

Ray March. The subroutine raymarch (see Figure 3c) calls
intersect in order to determine whether ray hits the bounding box
of the volume at all. If this is the case, intersect initializes the start
and end parameters rayT0 and rayT1 for ray. Then, we traverse ray

via its parameter t. In each iteration, we fetch a density for the cur-
rent position pos in the volume. As an optimization, we introduce
an early termination condition: If the current radiance result is
greater than a certain THRESHOLD, we will break the loop. Any com-
putations beyond that point will hardly contribute to the value for
the pixel. Next, we compute lighting for the current position and
accumulate that value to the current radiance result. Finally, we
return the computed radiance after applying a gamma_correction.

2.2 A Vectorized Volume Ray Caster
In order to exploit SIMD hardware, we shoot L rays simultaneously
through the volume. We use Sierra’s type constructor varying(L)
to create SIMD-friendly variants of the original data types Vec3

and Ray. The layout of Vec3 varying(4) has already been dis-
cussed in Section 1. The type Ray varying(L) consists of two

Vec3 varying(L) data types. We keep the program parametric in
its vector length L.

Render. In order to leverage SIMD hardware, we vectorize
along L consecutive pixels in x-direction. The example assumes
that L is a multiple of image_width. In order to achieve more SIMD
coherence, we could vectorize small tiles of pixels. For example, in
the case of vector length 4, we could vectorize for each 2x2 pixel
block of the target image. Or we could use 4x2-sized tiles for vector
length 8 and so forth.

Therefore, the inner loop ranging over xx in the vectorized
version of render (see Figure 3b), has a step size of L. For each
iteration, we create a vector x of length L which is a sequence
beginning with xx. Note that xx is broadcast to an int varying(L)

by replicating x L times since seq<L>() creates a sequence vector
of type int varying(L). Thus, in the case of vector length 4, x’s
value is (0, 1, 2, 3) in the first iteration, (4, 5, 6, 7) in the second,
(8, 9, 10, 11) in the third and so on.

Then, we invoke generate_ray. In contrast to the scalar ver-
sion, the function expects an int varying(L) as x value and re-
turns a Ray varying(L) as result. We feed this vectorial ray to the
vectorial version of the raymarch function which in turn produces
a float varying(L). We store this value into the target image. The
index expression is also vectorial, i.e., result’s elements are scat-
tered into memory (see Section 3.1.2). Scattering is not really nec-
essary here, as the index vector is consecutive. A data flow anal-
ysis can infer this information and rewrite the store with a more
efficient vector store [15]. Alternatively, the programmer could di-
rectly work on a float varying(L)* as image type.

Ray March. The function raymarch works on L rays simultane-
ously and returns L results. The function intersect now expects a
Ray varying(L). The variables rayT0 and rayT1 passed by refer-
ence must also be of vector type. The intersect procedure returns
a bool varying(L). Its ith element indicates whether the ith ele-
ment of ray is a hit. Analogously, the ith elements of rayT0 and
rayT1 hold the parameters of the ith

ray in the case of a hit. As the
condition for the if statement is vectorial, Sierra rewrites the pro-
gram in a way such that all lanes that missed will return 0.f. The
remaining part of the function is masked such that only lanes that
hit will continue to compute.

Similarly, the condition of the while statement is vectorial. The
loop is run until all lanes get inactive. Some lanes may terminate
earlier than others. These lanes will become inactive. In particu-
lar, the break statement may cause some lanes to terminate earlier
than others. Again, Sierra automatically inserts all masking oper-
ations and rewrites the control flow as if the program is run on L

independent threads. In fact, control flow is converted to data flow
which gives the programmer the illusion that different SIMD lanes
are executed on different control-flow branches.

2.3 Conclusion
The scalar and the vectorial versions are remarkably similar. For
the most part, they just differ in typing. The use of auto even
hides many of these differences. Merely, the initial loop which sets
up the vectorization has to be worked on more carefully by the
programmer. Thus, it is not much effort to port a scalar program to
a vectorial one.

In particular, the scalar version of the program is an instantiation
of the vectorial one. If we choose L = 1, the scalar program will
emerge: The conditions in if and while statements become scalar
again which in turn triggers usual scalar semantics of C++. The
performance result of different versions is compared in Section 5.

3. Sierra in Detail
In this section we discuss how Sierra works and integrates with
C++. First, we introduce vector types. Then, we discuss Sierra’s
so-called SIMD mode.

void render(float volume[], float image[], /* ... */) {
for (int y = 0; y < image_height; ++y) {

for (int x = 0; x < image_width; ++x) {

auto ray = generate_ray(x, y, /* ... */);
auto result = raymarch(volume , ray , /* ... */);
image[y * image_width + x] = result;

}
}

}

(a) Scalar version

void render(float volume[], float image[], /* ... */) {
for (int y = 0; y < image_height; ++y) {

for (int xx = 0; xx < image_width; xx += L) {
auto x = xx + seq <L>();
auto ray = generate_ray(x, y, /* ... */);
auto result = raymarch(volume , ray , /* ... */);
image[y * image_width + x] = result;

}
}

}

(b) Vectorial version

float
raymarch(float volume[], Ray& ray , /* ... */) {

float rayT0 , rayT1;
if (! intersect(ray , bounding_box , rayT0 , rayT1))

return 0.f;
// intersect initializes rayT0 , rayT1

// radiance along the ray
float result = 0.f;

// induction variables
auto pos = ray.dir*rayT0 + ray.origin;
auto t = rayT0;

while (t < rayT1) {
auto d = density(pos , volume , /* ... */);

// terminate on high attenuation
auto atten = /* ... */;
if (atten > THRESHOLD)

break;

auto light = compute_lighting(/* ... */);
result += light * /* ... */;
pos += /* ... */;
t += /* ... */;

}

return gamma_correction(result);
}

(c) Scalar version

float varying(L)
raymarch(float volume[], Ray varying(L)& ray , /* ... */) {

float varying(L) rayT0 , rayT1;
if (! intersect(ray , bounding_box , rayT0 , rayT1))

return 0.f;
// intersect initializes rayT0 , rayT1

// radiance along the ray
float varying(L) result = 0.f;

// induction variables
auto pos = ray.dir*rayT0 + ray.origin;
auto t = rayT0;

while (t < rayT1) {
auto d = density(pos , volume , /* ... */);

// terminate on high attenuation
auto atten = /* ... */;
if (atten > THRESHOLD)

break;

auto light = compute_lighting(/* ... */);
result += light * /* ... */;
pos += /* ... */;
t += /* ... */;

}

return gamma_correction(result);
}

(d) Vectorial version

Figure 3. Implementation of raymarch and render in C++/Sierra. Syntactic differences due to the use of Sierra are highlighted.

3.1 Types
As a first step we introduce a new type constructor: varying(L).
Syntactically, this constructor acts as additional type qualifier. The
type parameter L is a constant expression which must be a positive
power of two and is referred to as vector length. Additionally, the
type modifier uniform is available which acts as syntactic sugar
for varying(1). We call uniform variables scalar and varying(L)

variables vectorial (with L > 1).

3.1.1 Arithmetic Vector Types
Applying this new modifier to an arithmetic type, yields a vector
of this type. All usual operators are overloaded such that they also
work on vectors.

int varying (4) a; // 4-vector of ints
short varying (8) b; // 8-vector of shorts
double varying (7) c; // error: 7 not a power of two
float varying(f()) c;// error: ’f()’ not constant

Arithmetic Conversions. The C++ standard defines specific rules
when and how values from one type are automatically converted to
another type. In Sierra these rules apply analogously to vectors:

short varying (4) s;
int varying (4) i;
s + i; // s is converted to int varying (4)

3.1.2 Pointers and Gather/Scatter
Both a pointer itself and its referenced type may be scalar or
vectorial. Hence, four possibilities emerge:

// standard C pointer
int uniform* uniform a;
// vectorial pointer to scalar int
int uniform* varying (4) b;
// scalar pointer to vectorial int
int varying (4)* uniform c;
// vectorial pointer to vectorial int
int varying (4)* varying (4) d;

Pointers and/or array indices are allowed to be vectorial in
Sierra. Like in C++, an array subscript of the form E1[E2] is iden-
tical to (*((E1)+(E2))) if E1 is a pointer. However, the semantics
of binary + is overloaded to work with vectors. In particular, E2 is
broadcast (see Section 3.1.4) to E1’s length in the case that E2 is
scalar. Similar to arithmetic types, it is an error to mix vectors with
different vector lengths.

When indexing with vector x a vectorial pointer p to scalar data,
each lane refers to the address computed by p + x in that lane (see
Figure 4a). When indexing with vector x a vectorial pointer p to
vectorial data, each lane i refers to the ith element of the vector at
the address in the ith lane of p + x (see Figure 4b).

Dereferencing such an expression as rvalue assembles a new
vector. The operation is called gather. Dereferencing such an ex-
pression as lvalue disassembles the input vector and stores its com-
ponents into memory. The operation is called scatter.

0 1 2 3 4 5 6 7

3 7 1 5

(a) int uniform* varying(4) p;

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33 40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73

3 7 1 5

(b) int varying(4)* varying(4) p;

Figure 4. Suppose x is given by int varying(4) x = {3,7,1,5}. Then, p[x] obtains {3,7,1,5} in the case of (a) and {30,71,12,53} in
case of (b). Note that both variants yield an int varying(4).

AoS to hybrid SoA conversion. Pointer arithmetic in Sierra is
useful to convert AoS to hybrid SoA and vice versa on the fly:

Vec3 uniform* uniform aos = /* ... */;

for (int i = 0; i < size; i += L) {
Vec3 varying(L) v = aos[i + seq <L >()]; // gather
/* do something with v */
aos[i + seq <L>()] = v; // scatter

}

References. Albeit references of vectors are allowed, Sierra does
currently not support vectorial rvalue or lvalue references, i.e., the
references themselves may not be vectors. We leave research in that
direction as future work.

3.1.3 Derived Types
Unlike pointers, structs and unions cannot be vectorial. Instead,
vectorization is recursively applied to their members. Already spe-
cified members remain untouched:

struct S {
int a, b;
int uniform c;
int varying (4) d;

}; // vector length
// #.a #.b #.c #.d

S uniform s; // 1 1 1 4
S varying (4) t; // 4 4 1 4
S varying (8) u; // 8 8 1 4

This schema is recursively applied to all fields. However, when
encountering a pointer, the pointer itself becomes vectorial; the
referenced type remains untouched:

struct ListNode {
int data;
ListNode* next;

};

struct List {
int size;
ListNode* root;

};

// a vectorized list:
// four size elements
// four root pointers to scalar ListNodes
List varying (4) vectorized_list;
ListNode* varying (4) n = /* ... */;
int varying(L) data = n->data; // gather

If instead the referenced type had been vectorized, we would have
gotten four size elements and vectorial ListNodes. But it suffices
to only have one size element in that case. On the other hand,
creating a list of vectorial data can be created with templates. For
instance, vectorial data for STL containers work out-of-the-box:
std::list<int varying(4)>.

Currently, Sierra will only vectorize plain-old-data structs with-
out any methods. We leave automatic vectorization of full-featured
classes as future work. However, classes can be made polymorphic
in vector length by using templates. For example, the following
variant of the Vec3 class points into the direction how more so-
phisticated polymorphic classes can be built (the simd keyword is
described in Section 3.2.2):

template <int L>
struct Vec3 {

simd(L) Vec3(float varying(L) xx,
float varying(L) yy,
float varying(L) zz)

: x(xx), y(yy), z(zz) {}

simd(L) Vec3 <L> operator +(Vec3 <L> v) {
Vec3 <L> result;
result.x = x + v.x;
result.y = y + v.y;
result.z = z + v.z;
return result;

}

float varying(L) x, y, z;
};

3.1.4 Broadcast
Sierra allows automatic conversion from a scalar variable to a
vectorial variable of the same element type. We call this operation
broadcast:
int uniform u = /* ... */;
int varying (4) v = /* ... */;
int varying (8) w = /* ... */;
u + v; // u is broadcast to int varying (4)
u + w; // error: w is neither scalar nor of length 8

Vec3 varying (4) cross(Vec3 varying (4) v,
Vec3 varying (4) w) { /* ... */ }

Vec3 uniform u;
Vec3 varying (4) v;
Vec3 varying (4) w = cross(u, v); // u is broadcast

Also, broadcasts and arithmetic conversions may happen in the
same expression:
short s;
int varying (4) i;
s + i; // s is converted to int varying (4)

3.1.5 Extract and Insert Elements
Sierra provides the following built-in functions to insert elements
into and extract elements from a vector:
template <class T, int L>
T extract(const T varying(L)& vec , int i);
template <class T, int L>
void insert(T varying(L)& vec , int i, T val);

Non-varying types like the Vec3 template class in Section 3.1.3
can provide their own template specializations for extract and
insert. Thereby, these types integrate with other generic code
using these operations.

3.1.6 Vector Types vs. Array Types
At first glance, a vector int varying(L) v and an array int a[L]

seem similar. However, there are number of important differences:
• Arrays cannot be passed by value to a function. A function
void f(int a[L]) is just syntactic sugar for void f(int* a).
The given length L has no semantic meaning. Invoking
void g(int varying(L) v) on the other hand, really copies the
argument to v while v is guaranteed to have L elements.

x0

0

y0

0

z0
0

x4

0

y4

0

z4
0

x1

1

y1

1

z1
1

x5

1

y5

1

z5
1

x2

2

y2

2

z2
2

x6

2

y6

2

z6
2

x3

3

y3

3

z3
3

x7

3

y7

3

z7
3

2SliceRef<Vec3,4>

Figure 5. This data layout emerges when grouping a
Vec3 varying(4) into an array. If the programmer needs a
reference to a logically scalar Vec3, he cannot use a Vec3 uniform*

because the Vec3 instances lie non-consecutively scattered in
memory. A SliceRef<Vec3,4> points to the begining of a
Vec3 varying(4) and knows the element index (2 in this example)
which is referenced.

• Note the difference between vec3 v[N] (Figure 1a)
and vec3 varying(L) v[N] (Figure 1c). Furthermore,
vec3 va[N] varying(L) denotes L arrays to scalar data.
The type of &va[0] is vec3* varying(L).
• In contrast to arrays, it is not allowed to take the address of an

element in a vector. Any detours by tricky pointer casts or uti-
lizing unions lead to undefined behavior. There, an implemen-
tation is free to choose the exact representation of vectors. For
example, the internal representation of a uint64_t varying(4)

for a machine without native support for vectors of uint64_ts
may be two vectors of uint32_ts: One represents the lower
halves, one the upper halves. Moreover, a compiler can opti-
mize more aggressively if it knows that no other part of the
program holds a reference to an element of a vector. In the fol-
lowing example, the compiler knows that *pi does not alias any
elements of *pv:
void f(int varying (4)* pv , int* pi) { /* ... */ }

Programmers can workaround this limitation by using the pro-
vided proxy class (see Figure 5) which acts as a smart refer-
ence:
template <class T, int L>
class SliceRef {
public:

SliceRef(T varying(L)& ref , int i)
: ref_(ref), i_(i) {}

T get() { return extract(ref_ , i); }
void set(T val) { insert(ref_ , i, val); }

private:
T varying(L)& ref_;
int i_;

};

3.2 SIMD Mode
If a control-flow-dependent expression is a vector of length L in-
stead of a scalar, Sierra enters a special mode: the SIMD mode.
All parts of the program depending on that expression are eval-
uated in that mode. At runtime each program point must know
which lanes are active. Therefore, Sierra maintains a value of type
bool varying(L) which we call current mask. The programmer
has read access to this value via the current_mask keyword. We
call L the current vector length. As vector lengths must be speci-
fied at compile time, the current vector length is statically known.
Sierra’s semantic analysis keeps track of this information. If this
length is 1, we say the program is in scalar mode. Usual C++ se-
mantics apply in scalar mode.

For example, in Figure 2 the program starts off in scalar mode.
The comparison v < 3 is of type bool varying(4). Hence, the
then- and else-branches are executed in SIMD mode of length 4.
At runtime, the value of the current mask is {1, 0, 0, 1} in the
then- and {0, 1, 1, 0} in the else-branch.

The following statements will trigger SIMD mode of length L

for S if Ev is a vector of length L:

• if (Ev) S [else S]
• switch (Ev) S
• for (Si; Ev; E) S
• while (Ev) S
• do S while (Ev);

Additionally, short-circuit evaluation might trigger SIMD mode of
length L for E if Ev is a vector of length L:

• Ev && E and E && Ev
• Ev || E and E || Ev
• Ev ? E : E

If the type of Ev is a vector of length L, the program must either
be in scalar mode or in SIMD mode of length L. Nesting of SIMD
modes with different vector lengths is forbidden. However, scalar
control flow is always allowed.

In SIMD mode, Sierra vectorizes control flow [3, 4, 9, 14, 20].
The statements break, continue, case and return can be used
in SIMD mode. But currently, Sierra does neither allow goto nor
labels in SIMD mode.

The current mask masks all operations such that they are only
performed for active lanes. Sierra also inserts runtime checks which
assure that code regions without any workload get skipped. Never-
theless, side effects may happen at unexpected points due to the
altered control flow. This is intentional as this allows the compiler
to always rewrite control flow.

3.2.1 Restrictions
In scalar mode variables may have arbitrary vector lengths. How-
ever, in SIMD mode of length L, it is only allowed to declare or
use uniform variables or ones with vector length L. The size of the
element type does not introduce any constraints.

float varying (4) f = /* ... */;
double varying (4) d = /* ... */;
int varying (8) i = /* ... */;
if (f < d) {

d += f; // OK
i++; // error

}

3.2.2 Function Calls
Since arbitrary functions may be called in SIMD mode, these func-
tions must know of the current mask. For example, the function
density in Figure 3d is called in SIMD mode. Therefore, functions
can be annotated with simd(L). This indicates, that a hidden param-
eter of type bool varying(L) is passed to the function: the current
mask. If this annotation is missing, all currently active vectorial ar-
guments must be split into scalars similar to the for_each_active

statement (see Section 3.2.3). In scalar mode, a dummy all-true
mask is passed to a simd(L) function. It is forbidden, to invoke
a simd(L) function in a SIMD mode of length N for L 6= N. This
parameter can also be templated:

template <int L>
simd(L) float varying(L) dot(Vec3 varying(L) v,

Vec3 varying(L) w) {
return v.x*w.x + v.y*w.y + v.z*w.z;

}

3.2.3 The Scalar Statement
Sometimes it is desirable to deactivate vectorization within a kernel
and proceed with scalar computations. Therefore, Sierra offers the
scalar statement:

scalar (mask) S

This statement saves the current mask and copies it to mask. Then,
S is executed in scalar mode. Afterwards, the current mask is
restored. The (mask) is optional.

Scalarize Each Active Lane. Often, it is necessary to fetch all
active values from a vector. Sierra offers a statement
for_each_active(mask , i) S

for this task. The body S is now in scalar mode and each iteration
assigns the next prior active lane index to i. The prior active mask is
copied to mask. The statement translates to the following pattern:
scalar (mask)

for (int i=bitscan(mask , 0);// get first active lane
i >= 0; // while true value exists
i = bitscan(mask , i+1)) // get next value

S // body

This code assumes that bitscan returns -1 if there is no further true
value in the mask.

Scalarize Each Active Unique Lane. A related statement only
extracts unique values from v’s active lanes:
for_each_unique(mask , i, v) S

This is accomplished by blending out duplicates in each iteration:
scalar (mask)

for (int i=bitscan(mask , 0);// get first active lane
i >= 0; // while true value exists
mask &= extract(v, i) != v,// remove duplicates
i = bitscan(mask , i+1)) // get next value

S // body

The following program demonstrates both for-each variants:
int varying (8) a = 4;
int varying (8) b = {1, 1, 2, 2, 3, 3, 9, 9};

if (a < b) {
for_each_active(mask , i)

printf ("%i ", extract(a, i); // >> 1 1 2 2 3 3

scalar printf ("\n");

for_each_unique(mask , i, a)
printf ("%i ", extract(a, i); // >> 1 2 3

scalar printf ("\n");
}

3.3 Virtual Method Calls for Vectorial this Pointers
In the following example the compiler has to invoke four virtual
methods:
struct A {

virtual simd(L) f(/* params */) = 0;
};
struct B : public A {

virtual simd(L) f(/* params */) { /* ... */ }
};
struct C : public A {

virtual simd(L) f(/* params */) { /* ... */ }
};

A* varying (4) a = /* ... */;
a->f(/* args */);

Sierra first gathers a vector of function pointers by looking up
the virtual method tables (vtable). Then, Sierra searches this vector
for duplicates in order to group lanes with the same function pointer
into one call. This technique is similar to the for_each_unique

pattern. The following pseudo code demonstrates this mechanism:
// get vector of function pointers
auto fct_ptr_vec = this ->vtable_ptr ->f; // gather
for_each_active(mask , i) {

fct_t p = extract(fct_ptr_vec , i);
// pos is a bool vector indicating duplicates
auto pos = p == fct_ptr_vec;
// actual call
(*p)(this , // hidden ’this ’ arg

mask & pos , // hidden ’current_mask ’ arg
args)); // remaining args

mask &= ~pos; // blend out duplicates
}

4. Discussion and Related Work
4.1 Automatic Vectorization Techniques
Vectorizing compilers have a long history. Traditional approaches
try to transform the innermost loop to compute n steps in a data-
parallel fashion [3, 4]. If an outer loop contains more work, it is
worthwhile to vectorize an outer loop instead [25, 27]. A different
approach exploits instruction-level parallelism (ILP). There, the in-
ner loop is unrolled n times. Then, multiple instances of instruc-
tions are hoisted to an n-wide vector instruction [6, 18, 26, 32]. Yet
another approach, called superword-level parallelism (SLP), tries to
merge several scalar operations into a vector operation even in the
absence of loops. This can be done on a per-basic-block level [19]
or in the presence of control flow [30].

4.2 Support in Programming Languages
Short Vectors. Most C/C++ compilers provide short vector data
types—Similar to Sierra’s varying types. The compiler can eas-
ily map operations on these types to the hardware. Furthermore,
such compilers provide ISA-specific built-in functions—so-called
intrinsics. These intrinsics directly map to assembly instructions.
However, this enforces an assembly-like programming style. In par-
ticular, masking must be done manually which is extremely tedious
and error-prone. Sierra handles masking automatically. Some li-
braries like Bost.SIMD [7] wrap these functionalities in portable
libraries. However, the programmer still needs to manually convert
control flow to data flow and perform all necessary masking by
himself.

Array Programming. Some languages/extensions like APL [13],
Vector Pascal [24], MatLab/Octave, FORTRAN or ArBB [23] (for-
merly known as Ct [10]) allow operations which work on scalar
values also on arrays. The compiler automatically builds the neces-
sary loop. In the following example a, b and c are arrays of ints.
By writing

a = b + c.

a vectorizing compiler automatically creates a vectorized loop:

for i = 0 to N step L
a[i..L-1] = b[i..L-1] + c[i..L-1]

next

While this programming style excels in the domain of vector
and matrix computations, other programming patterns are not eas-
ily mappable to this paradigm. For example, the volume renderer
presented in Section 2 does not use such patterns at all. Further-
more, vectorization will only work for arithmetic types.

Cilk+. Aside from providing facilities for multithreaded parallel
computing, Cilk+ supports SIMD in two ways.

First, a loop may be annotated by #pragma simd. This allows the
compiler to vectorize the loop even if the compiler cannot guaran-
tee to preserve the semantics of the original scalar program. How-
ever, the compiler will not reorganize the program’s data structures
as Sierra’s varying type constructor does. Instead, data may be re-
ordered on the fly. Furthermore, calls to functions compiled in other
translation units cannot be vectorized. Usually, the compiler will
try to inline functions into the loop’s body such that vectorization
needs not to be performed in an inter-procedural manner.

Second, Cilk+ provides special constructs to deal with arrays
in a convenient way much like array programming discussed ear-
lier. Cilk+ can partially mimic a Sierra type T varying(L). As
long as T is an arithmetic type, the Cilk+ type T[L] behaves sim-
ilar. However, Cilk+ does not support automatic masking which
makes short vectors in Cilk+ less useful. On the other hand, Sierra
can mimic Cilk+’s long vectors. A standard-conform way would
be to write template specializations for std::valarray<int>,
std::valarray<float> and so forth which internally work on
int varying(L)* or float varying(L)*, respectively.

 0x

 1x

 2x

 3x

 4x

 5x

 6x

 7x

volumerenderer aobench mandelbrot binomial blackscholes

scalar SSE, no auto−vectorization

scalar AVX, no auto−vectorization

auto−vectorized SSE

auto−vectorized AVX

4x SSE

8x SSE

8x AVX

16x AVX

Figure 6. Speedups compared to the scalar SSE version.

OpenMP. OpenMP 4.0 [1] also introduces an annotation to mark
loops as vectorizable. Additionally, functions can be declared with
#pragma declare simd. This allows OpenMP to call a vectorized
version of a function from within a vectorized loop. A number of
clauses control the semantics. Setting simdlen(L) corresponds to
setting all parameters as varying(L) types in Sierra. Additionally,
parameters can be declared as uniform like in in Sierra. The clause
inbranch is similar to simd(L). In Sierra however, the programmer
gets more fine-grained control over the vectorization lengths, as
Sierra allows mixing of vector lengths to a certain degree. The
OpenMP specification is intentionally unclear about how exactly
types are transformed. As the specification is fairly young at the
time of writing, it is hard to make sound statements. But we believe
that pointers become varying pointers to uniform data resulting in
expensive gather/scatter operations (see Section 3.1.2). As outlined
in Section 3.1.3, vectorizing the referenced type instead of the
pointer type may have strange semantic implications. However,
a Sierra programmer has the freedom to manually use pointers
to varying data. Moreover, we also believe that argument types
beyond arithmetic types will not be vectorized by OpenMP. This
would introduce too many subtle changes in the semantics.

Data-Parallel Languages. Data-parallel languages originate
from shading languages—RenderMan [11] being one of the first
implemented. RenderMan also pioneered the concept of uniform

and varying variables. Modern shading languages like Cg [22],
GLSL [17] or HLSL [33] and also general-purpose data-parallel
languages like CUDA [28], OpenCL [16], IVL [21] or ispc [29]
still follow the same programming model: The programmer basi-
cally writes a scalar program. The compiler instantiates the pro-
gram n times to run it simultaneously on n computing resources.
When those computing resources are only SIMD processors, all si-
multaneously running processes run in lockstep. Program instances
may run asynchronously, when the compiler also leverages multi-
threading. Therefore, the programmer has to use barrier synchro-
nization in order to communicate across program instances [31].

Sierra borrows the idea to overload control-flow constructs to
also work on vectors from ispc and IVL. New to our approach
is that the program starts off in scalar mode. The programmer
explicitly triggers vectorization by using vector types. Furthermore,
the programmer can mix various vector lengths to a certain extent.
In contrast to Sierra, an ispc or IVL programmer has to agree
on a global vectorization length per translation unit. Therefore,
Sierra does not need a special kernel language which then gets
plugged into the host language. We believe this is in practice a
major obstacle for programmers to adopt languages like OpenCL.

5. Implementation and Evaluation
Our research compiler is a fork of the LLVM-based compiler
clang 3.3, and thus, supports—as its original—the complete C++11

standard. The extension must be explicitly enabled via the switch
-fsierra and supports most of the features presented in this pa-
per. However, without using any Sierra types, the Sierra compiler is
still a usual C++ compiler. Activating the Sierra extension will not
break any existing C++ code. The key to this achievement is that
none of Sierra’s special semantics will be triggered without using
varying types.

Sierra compiles arithmetic vector types to LLVM vector types.
LLVM in turn splits vectors during its type legalization phase [5]
to the machine’s native vector length if necessary. In particular, this
allows for double-pumping, i.e., using vectors of length twice the
machine’s native length (for example float varying(8) on SSE).

As outlined in Section 3.2, Sierra vectorizes code from its
AST representation. Consequently, Sierra directly emits vectorized
LLVM code. From there on, Sierra runs Clang’s default driver for
steering the LLVM pipeline. Sierra does not rely on any specific
LLVM patches.

We implemented several programs in order to evaluate the per-
formance of our extension. As outlined in Section 2.3, a scalar pro-
gram is an instance of a vectorial program. This means, we reused
the same program for all variants. We exposed the desired vector
length as macro such that passing -DVECTOR LENGTH=L via com-
mand line sets the vector length of the benchmark to L. No changes
to the code were necessary to create the variants. We compiled all
programs with -O3 and -ffast-math to allow for further opti-
mizations. We tested our programs with SSE 4.2 (-msse4.2) and
AVX (-mavx).

Our test ran on an Intel R© Ivy Bridge CoreTM i7-3770K CPU.
We used the median performance of 11 runs for computing the
speedups shown in Figure 6.

First, we measured the performance of scalar programs without
using LLVM’s built-in auto-vectorization.1 The SSE variant of a
program serves as baseline for all other variants of the same pro-
gram. Consequently, all non-auto-vectorized SSE programs have a
speedup of 1x. Next, we explicitly enabled LLVM’s auto-vectorizer
for all programs. Then, we instantiated vectorized versions. In the
case of SSE, we instantiated variants with vector length 4 (native)
and 8 (double-pumped). In the case of AVX, we instantiated vari-
ants with vector length 8 (native) and 16 (double-pumped).

We implemented the volume renderer presented in Section 2.
We also ported the publicly available aobench.2 Similar to the
volume renderer, only minor changes to the sources were neces-
sary. Furthermore, we implemented programs for computing the
Mandelbrot set, the binomial options pricing model and the Black-
Scholes algorithm.

Without using any vectorization techniques, compiling for AVX
instead of SSE did not make any notable differences except for the
Black-Scholes algorithm, which ran slightly faster. Surprisingly,
auto-vectorization either did not affect the runtime at all or even
imposed a performance penalty. Using Sierra’s 4x vectorization on
SSE resulted in a speedup of roughly 2x for volumerenderer,
2.5x for aobench and mandelbrot, almost 4x for binomial and
about 4.5x for blackscholes. Double-pumping yielded a small
improvements most of the time. Using Sierra’s 8x vectorization on
AVX resulted in a speedup of roughly 2.5x for volumerenderer,
3x for aobench, 3.5x for mandelbrot, 4x for binomial and
7x for blackscholes. We obtained mixed results when double-
pumping AVX. We believe this is due to the fact that AVX is
internally already double-pumped on Ivy Bridge. Moreover, many
AVX instructions still use a native vector length of 4 instead of 8.

5.1 Further Improvements
While LLVM does overall a fairly good job when generat-
ing code, LLVM’s back-end also has some problems. A major

1 This can be controlled via -fno-vectorize, -fno-slp-vectorize and
-fno-slp-vectorize-aggressive.
2 http://code.google.com/p/aobench

http://code.google.com/p/aobench

dilemma is that most ISAs are unclear about the exact represen-
tation of boolean vectors. For example, on SSE comparing two
float varying(4) values actually yields a uint32_t varying(4).
Each uint32_t component represents a mask consisting of either
0 or ~0. Special blend instructions (or bit arithmetic on older SSE
versions) use these masks as input to implement the masking for
vectorized control flow (see Section 3.2). However, a comparison
of double varying(4) values yields a uint64_t varying(4) since
this is a double-pumped operation on SSE. Additionally, there ex-
ists an instruction to convert a mask value to a consecutive sequence
of bits—each one representing one boolean value. Unfortunately,
the reverse instruction is missing which makes this data format less
useful. However, in Sierra all comparisons yield boolean vectors
which get translated to boolean vectors in LLVM. LLVM’s repre-
sentation for boolean vectors is neither of the presented ones but a
consecutive sequence of bytes. LLVM indeed tries to eliminate con-
versions but this currently only works on a per-basic-block level.
Thereby, LLVM introduces superfluous conversions which addi-
tionally increase register pressure.

A related problem is how to check if any or all elements of a
boolean vector are true or false. For example, a vectorized loop
must be run till the termination condition holds in all lanes. There
exist special instructions which perform this task in an efficient
manner but it is difficult to provoke the emission of these instruc-
tions in LLVM. The same is true for other patterns which are map-
pable to built-in assembly instructions of the ISA. For instance,
AVX supports an instruction to find the minimum of two float vec-
tors. The front-end could directly emit the machine instruction in
question (via an LLVM intrinsic) but this is a mixed blessing. On
the one hand, you can be sure that the intended instruction is se-
lected during code generation. On the other hand, LLVM analyses
and transformations do not know the semantics of these intrinsics.
Even simple transformations like constant folding do usually not
work on intrinsics.

Furthermore, LLVM’s analyses and transformations are just not
as sophisticated for vectors as for scalars in many areas. Addi-
tionally, some special transformations may be needed in order to
use some tricks an experienced human intrinsic programmer would
have used.

For these reasons we believe, that there is still much room for
improving the performance of Sierra’s emitted vectorized code.
Moreover, we hope that AVX-512 will solve many of these prob-
lems as this instruction set introduces special predication registers
which resolve the discussed boolean vector ambiguity.

6. Conclusion
In this paper we have presented a SIMD extension for C++. Al-
though this extension focuses more on the C subset of C++, it inte-
grates well with other C++ features like templates. Our implemen-
tation proves that such an extension is effective while our bench-
marks back the need for such an extension.

Sierra is in the spirit of C++: Explicit vector types provide
predictable performance gains on SIMD hardware. Vector types
are portable. Vectorization of data types provides the programmer
a tool to build SIMD-friendly data structures. Automatic masking
massively eases programming and makes vector code almost look
like scalar code. This makes Sierra particularly appealing to adopt
SIMD computing in existing C++ programs.

References
[1] OpenMP Application Program Interface, 2013.
[2] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-Time Rendering,

Third Edition. Taylor & Francis, 2011.
[3] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of

Control Dependence to Data Dependence. In POPL, 1983.
[4] R. Allen and K. Kennedy. Automatic Translation of FORTRAN

Programs to Vector Form. ACM Trans. Program. Lang. Syst., 1987.

[5] Y. Ben-Asher and N. Rotem. Hybrid type legalization for a sparse
SIMD instruction set. TACO, 2013.

[6] G. Cheong and M. Lam. An optimizer for multimedia instruction sets.
In SUIF, 1997.

[7] P. Esterie, M. Gaunard, J. Falcou, J.-T. Lapresté, and B. Rozoy.
Boost.SIMD: generic programming for portable SIMDization. In
PACT, 2012.

[8] M. J. Flynn. Some computer organizations and their effectiveness.
IEEE Trans. Comput., 1972.

[9] N. Fritz. SIMD Code Generation in Data-Parallel Programming. PhD
thesis, Universität des Saarlandes, 2009.

[10] A. Ghuloum et al. Future-Proof Data Parallel Algorithms and Software
on Intel Multi-Core Architecture. Intel Technology Journal, 11(04),
November 2007.

[11] P. Hanrahan and J. Lawson. A language for shading and lighting
calculations. In SIGGRAPH, 1990.

[12] Intel Corp. Intel R© 64 and IA-32 Architectures Optimization Refer-
ence Manual, 2009.

[13] K. E. Iverson. A Programming Language. John Wiley & Sons, Inc.,
1962.

[14] R. Karrenberg and S. Hack. Whole Function Vectorization. In CGO,
2011.

[15] R. Karrenberg and S. Hack. Improving performance of OpenCL on
CPUs. In CC, 2012.

[16] Khronos. The OpenCL Specification, version: 1.2 edition, 2012.
[17] Khronos. The OpenGL Shading Language, language version: 4.40

edition, 2013.
[18] A. Krall and S. Lelait. Compilation techniques for multimedia proces-

sors. International Journal of Parallel Programming, 2000.
[19] S. Larsen and S. Amarasinghe. Exploiting superword level parallelism

with multimedia instruction sets. In PLDI, 2000.
[20] R. Leißa. Automatic SIMD code generation. Master’s thesis,

Westfälische Wilhelms-Universität Münster, 2010.
[21] R. Leißa, S. Hack, and I. Wald. Extending a C-like Language for

Portable SIMD Programming. In PPoPP, 2012.
[22] W. R. Mark, R. Steven, G. Kurt, A. Mark, and J. Kilgard. Cg: A system

for programming graphics hardware in a C-like language. 2003.
[23] M. McCool. A Retargetable, Dynamic Compiler and Embedded lan-

guage. In CGO, 2011.
[24] G. Michaelson and P. Cockshott. Vector Pascal, an array language,

2002.
[25] V. N. Ngo. Parallel Loop Transformation Techniques for Vector-based

Multiprocessor Systems. PhD thesis, 1995.
[26] D. Nuzman and R. Henderson. Multi-platform auto-vectorization. In

CGO, 2006.
[27] D. Nuzman and A. Zaks. Outer-loop vectorization: Revisited for short

simd architectures. In PACT, 2008.
[28] NVIDIA. CUDA Programming Guide, 2009.
[29] M. Pharr and W. R. Mark. ispc: A SPMD compiler for high-

performance CPU programming. In InPar, 2012.
[30] J. Shin, M. Hall, and J. Chame. Superword-level parallelism in the

presence of control flow. In CGO, 2005.
[31] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phasers:

A unified deadlock-free construct for collective and point-to-point
synchronization. In ICS, 2008.

[32] N. Sreraman and R. Govindarajan. A vectorizing compiler for mul-
timedia extensions. International Journal of Parallel Programming,
2000.

[33] S. St-Laurent and E. Wolfgang. The Complete HLSL Reference.
Paradoxal Press, 2005.

[34] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive Render-
ing with Coherent Ray Tracing. Computer Graphics Forum (Proceed-
ings of EUROGRAPHICS), 2001.

[35] J. Zhou and K. A. Ross. Implementing Database Operations Using
SIMD Instructions. In SIGMOD, 2002.

	Introduction
	Contributions

	A Volume Ray Caster in Sierra
	A Scalar Volume Ray Caster
	A Vectorized Volume Ray Caster
	Conclusion

	Sierra in Detail
	Types
	Arithmetic Vector Types
	Pointers and Gather/Scatter
	Derived Types
	Broadcast
	Extract and Insert Elements
	Vector Types vs. Array Types

	SIMD Mode
	Restrictions
	Function Calls
	The Scalar Statement

	Virtual Method Calls for Vectorial this Pointers

	Discussion and Related Work
	Automatic Vectorization Techniques
	Support in Programming Languages

	Implementation and Evaluation
	Further Improvements

	Conclusion

