Improving Performance of OpenCL on CPUs

Ralf Karrenberg and Sebastian Hack

Saarland University, Germany
{karrenberg,hack}@cdl.uni-saarland.de

Abstract. Data-parallel languages like OpenCL and CUDA are an im-
portant means to exploit the computational power of today’s computing
devices. In this paper, we deal with two aspects of implementing such
languages on CPUs: First, we present a static analysis and an accom-
panying optimization to exclude code regions from control-flow to data-
flow conversion, which is the commonly used technique to leverage vector
instruction sets. Second, we present a novel technique to implement bar-
rier synchronization. We evaluate our techniques in a custom OpenCL
CPU driver which is compared to itself in different configurations and to
proprietary implementations by AMD and Intel. We achieve an average
speedup factor of 1.21 compared to naive vectorization and additional
factors of 1.15-2.09 for suited kernels due to the optimizations enabled by
our analysis. Our best configuration achieves an average speedup factor
of over 2.5 against the Intel driver.

Keywords: OpenCL, SIMD, Vectorization, Data Parallelism, Code Gen-
eration, Synchronization, Divergent Control Flow

1 Introduction

In this paper, we present two techniques to speed up data-parallel programs on
machines with explicit SIMD operations (e.g. current CPUs). Although we focus
on OpenCL in this paper, the presented techniques are also applicable to similar
languages like CUDA. A data-parallel program is written in a scalar style. It
is then executed in n instances (sometimes called threads, however this is not
to be confused with an operating system thread) on a computing device. To
a certain extent, the order of execution among all instances of the program is
unspecified to allow for parallel or sequential execution as well as a mixture of
both. Every instance is identified with a thread ID which is called tid in the
following. Usually, the data-parallel program uses the tid to index data. Hence,
every instance can process a different data item.

Since data-parallel semantics explicitly do not define an order of the in-
stances, languages like OpenCL lend themselves to vector processing. In this
paper, we consider machines that support SIMD instruction sets such as Intel’s
SSE and AVX, or ARM’s NEON. SIMD instructions operate on a vector of W
data items where W is the SIMD width (e.g. 4 32 bit values for SSE, 8 for
AVX). To implement a data-parallel program on such a processor, one creates

a vector program that executes W instances of the original program in parallel.
The challenge in this setting is divergent control flow: at a conditional jump, it
might be the case that instance ¢ takes the branch, while instance j does not.
Hence, the vector program must accommodate both situations. Usually this is
solved by control-flow to data-flow conversion [1] where branches are replaced
by predicate variables which express the control condition. Then, control flow is
linearized, i.e. the vector program executes every instruction of the program and
masks out the inactive computations using the predicates. The latter happens
either by explicit blending of the values or by instruction predication provided
by the hardware.

However, applying control-flow linearization naively leaves some potential
unexploited: in many data-parallel programs, several branches do not diverge
because they depend on values which are the same (uniform) for all instances.
Consider the example in Figure 1: The condition expr(x) only depends on uni-

__kernel void foo(int* data, int x) {
/x A x/ ..
/* B */ if (expr(x))
/¥ C */ dataltid] = ...;

else
/* D */
/% E */ ...

Fig. 1. An example kernel, the control-flow graph of its scalar version, and one possible
linearization of the vector version after applying control-flow to data-flow conversion.

form values.! Hence, the branch needs not be linearized because either all in-
stances take it or none. In addition, the evaluation of the condition can be hoisted
outside the kernel. On the other hand, the computations inside the branch can-
not be hoisted because they depend on the variable tid which is mot uniform
across all instances.

Previous work [22] injects code into the linearized vector program to dynam-
ically test whether all instances evaluate a condition to the same value. If so,
the corresponding code part can be bypassed by a branch, trading a reduction
of the amount of executed code for some overhead for the dynamic test. While
this reduces the number of instructions executed, it cannot compensate another
drawback of control-flow to data-flow conversion: the increase of register pres-
sure on architectures that do not support predication. Reconsider the example
in Figure 1. When control flow is linearized, every variable that is live at the
entrance of D will be live throughout C. Correspondingly, all variables live out

! Note that the arguments passed to the kernel are the same for every instance, hence
they are uniform.

at C will live throughout D. Our experiments have shown that the increase in
register pressure often causes more spilling and reloading which deteriorates per-
formance. Keeping control flow for this code part prevents the increase of register
pressure.

In this paper, we present a static analysis to identify branches that will never
diverge and a code transformation that exploits these results to avoid control-
flow linearization whenever possible. The result is a vector program in which
only code parts of which we could not prove non-divergence are linearized.

Another important feature of languages like OpenCL is barrier synchroniza-
tion. A kernel can use a barrier statement to enforce that no instance of a thread
group executes the statement following the barrier before all instances of that
group have reached the barrier. GPUs have dedicated hardware support to im-
plement barrier synchronization. On CPUs, barriers need to be implemented in
software. Simple implementations use the support of the runtime system and
the operating system [24] which boils down to saving and restoring the complete
state of the machine. More sophisticated techniques use loop fission on the ab-
stract syntax tree to decompose the kernel into separate pieces that are executed
in a way such that all barriers are respected [25]. However, this technique po-
tentially introduces more synchronization points than needed. In this paper, we
generalize the latter approach to work on control-flow graphs (CFGs, instead of
abstract syntax trees) while not increasing the amount of synchronization points.

1.1 Contributions
To summarize, this paper makes three main contributions:

1. We present a static analysis that identifies blocks in the CFG of a data-
parallel program that do not diverge. For these blocks, control flow can be
retained and needs not be replaced by data flow.

2. We present an SSA-based linearization algorithm that leverages the diver-
gence analysis by retaining control flow, even in presence of irregular and
arbitrarily nested control-flow structures (e.g. loops with multiple exits or
jumps that exit multiple loops).

3. We present a novel technique to implement barrier synchronization for data-
parallel languages on CPUs that splits the function into continuations. This
does not require costly interaction with the OS, prevents introduction of
additional synchronization points, and reduces overhead by only saving the
live values.

1.2 Structure of this Paper

In the next section, we give an overview of our OpenCL driver and present our
implementation of barrier synchronization. Section 3 describes the divergence
analysis and how it can be used to increase the efficiency of vectorized kernels.
Section 4 discusses related work and Section 5 presents our experimental evalu-
ation.

2 OpenCL Driver Implementation

In this section, we describe code-generation techniques to improve the efficiency
of an OpenCL driver. The compilation scheme of our driver looks like this:

. Perform SIMD vectorization — Section 2.1
. Implement barriers — Section 2.3
. Create loops over local instances — Sections 2.2, 2.3

. Remove API callbacks (such as get_global_id()) — Section 2.2

T o W N =

. Create wrapper for driver interface

The interface wrapper allows the driver to call the kernel with a static signa-
ture that receives only a pointer to a structure with all parameters. Pseudo-code
for the modified kernel is shown in Figure 2 (before inlining and the callback
optimizations described in Section 2.2).

2.1 SIMD Vectorization

We employ a modified algorithm for “Whole-Function Vectorization” (WFV) [12]
to exploit SIMD instruction sets by transforming the kernel such that it computes
W instances of the original kernel.

Enabling WFV in OpenCL can be summarized as follows: Vectorization is
based upon changing the callback functions get_global_id() and get_local_id ()
to return a vector of the W IDs whose instances are executed by the vectorized
kernel. From there, all uses of these indices are vectorized, mask and blend oper-
ations are created as necessary, and control flow is linearized [12]. However, we
enhance these phases by additional analyses and optimizations that are described
in Section 3.

2.2 Runtime Callbacks

OpenCL allows the user to organize threads in multiple dimensions (each thread
is identified by an n-tuple of IDs for n dimensions). Furthermore, it allows to
create groups of threads that are executed together and can be synchronized
(see Section 2.3).

Given a kernel and a global number of threads N, x N, organized in a two-
dimensional grid with groups of size G x G, the driver is responsible for calling
the kernel N, x N, times and for making sure that calls to get_local_id()
etc. return the appropriate thread ID of the given dimension. The most natural
iteration scheme for this employs nested “outer” loops that iterate over the
number of groups of each dimension (N,/G, and N,/G,) and nested “inner”
loops that iterate over the size of each group (G, and G,). Consider Figure 2
for some pseudo-code.

If the application uses more than one dimension for its input data, the driver
has to choose one SIMD dimension for vectorization. This means that only

clEnqueueNDRangeKernel (Kernel kernelWrapper, TA arg_struct,
int* globalSizes, int* localSizes) {
int iter_0 = globalSizes[0] / localSizes[0];
int iter_1 = globalSizes[1] / localSizes[1];
for (int i=0; i<iter_0; ++i) {
for (int j=0; j<iter_1; ++j) {
int groupIDs[2] = { i, j };
kernelWrapper (arg_struct, groupIDs, globalSizes, localSizes);

void kernelWrapper (TA arg_struct, int* groupIDs,
int* globalSizes, int* localSizes) {
TO param0 = arg_struct.pO;

TN paramN = arg_struct.pN;
int base0 = groupIDs[0] * localSizes[0];
int basel = groupIDs[1] * localSizes[1];
__m128i baseOV = <baseO, base0O, base0, baseO0>;
for (int i=0; i<localSizes[1]; ++i) {
int 1id1 i; // local 4id (dim 1)
int tidl basel + 1lidil; // global id (dim 1)
for (int j=0; j<localSizes[0]; j+=4) {
__m128i 1id0 = <j, j+1, j+2, j+3>; // local ids (dim 0)
__m128i tid0 = baseOV + 1idO; // global ids (dim 0)
simdKernel (param0, ..., paramN, 1id0, 1lidl, tid0, tid1,
groupIDs, globalSizes, localSizes);

Fig. 2. Pseudo-code implementation of clEnqueueNDRangeKernel and the kernel
wrapper before inlining and optimization (2D case, W = 4). The outer loops iterate
over the number of groups, which can easily be parallelized across multiple threads. The
inner loops iterate over all instances of a group (step size 4 for the SIMD dimension 0).

queries for instance IDs of this dimension will return a vector, queries for other
dimensions return a single ID. Because it is the natural choice for the kernels we
have analyzed so far, our driver currently always uses the first dimension. How-
ever, it would be easy to implement a heuristic that chooses the best dimension,
e.g. by comparing the number of memory operations that can be vectorized in
either case. The inner loop that iterates over the dimension chosen for vector-
ization is incremented by W in each iteration as depicted in Figure 2.

We automatically generate a wrapper around the original kernel that includes
the inner loops while only the outer loops are implemented directly in the driver
(to allow multi-threading, e.g. via OpenMP). This allows us to remove all over-
head of the callback functions: All these calls query information that is either
statically fixed (e.g. get_global_size()) or only depends on the state of the
inner loop’s iteration (e.g. for one dimension, get_global id () is the local size
multiplied with the group ID plus the local ID). The static values are supplied as
arguments to the wrapper, the others are computed directly in the inner loops.
After the original kernel has been inlined into the wrapper, we can remove all
overhead of callbacks to the driver by replacing each call by a direct access to
a value. Generation of the inner loops “behind” the driver-kernel barrier also
exposes additional optimization potential of the kernel code together with the

surrounding loops and the callback values. For example, loop-invariant code mo-
tion moves computations that only depend on group IDs out of the innermost
loop (reconsider the example in Figure 1).

2.3 Continuation-Based Synchronization

OpenCL provides the barrier() statement to implement barrier synchroniza-
tion of all threads in a group. A barrier enforces all threads of the group to reach
it before the threads in the group can continue executing instructions behind the
barrier. This means that the current context of a thread needs to be saved when
it reaches the barrier and restored when it continues execution. Instead of rely-
ing on costly interaction with the operating system, we use the following code
transformation to implement barrier synchronization.

Let the set {by,...,b,} be the set of all barriers in the kernel. We apply the
following recursive scheme: From the start node of the CFG, start a depth-first
search (DFS) which does not traverse barriers. All nodes reached by this DFS are
by construction barrier free. The search furthermore returns a set of barriers B =
{bi,,...,b;, } which it hit. At each hit barrier, we determine the live variables
and generate code to store them into a structure. For every instance in the group,
such a structure is allocated by the driver. The last instruction generated is a
return with the ID of the hit barrier. Now, the instructions b;,, ..., b;,, are taken
as start points for m different kernels. For each one, we apply the same scheme
until there are no more kernels containing barriers. Figure 3 gives an example
for this transformation.

[a:] Fy F,

ag next: Fa

— b

C1 next: Fs

= b

da next: Fy return
@ next: Fg

Fig. 3. Example CFG of a kernel which requires synchronization (the barriers are
indicated by the bars crossing the blocks), the CFG after splitting blocks with barriers,
and the resulting set of new kernels {F1,..., F4}.

Then, we generate a wrapper that switches over the generated kernels de-
pendent on the last returned barrier ID (see Figure 4).

void newKernel (TO paramO, ..., TN paramN, int localSize, ...) {
void* datal[localSize/W] = alloc((localSize/W) * liveValSize);
int next = BARRIER_BEGIN;
while (true) {
switch (mext) {
case BARRIER_BEGIN:
for (int i=0; i<localSize; i+=W)

next = F1(paramO, ..., paramN, tid, ..., &datali/W]l);
break;
case B2:
for (int i=0; i<localSize; i+=W)
next = F2(tid, ..., &datal[i/W]);
break;
case B4:
for (int i=0; i<localSize; i+=W)
next = F4(tid, ..., &datal[i/W]);
break;

case BARRIER_END: return;

Fig. 4. Pseudo code for the kernel of Figure 3 after implementation of barriers and
before inlining and optimization (1D, computations of tid etc. are omitted).

Note that the semantics of OpenCL require all instances to hit the same
barrier, otherwise the program’s behavior is undefined. Hence, if not all instances
return the same ID, the kernel is in a bad state anyways, so we simply use the
ID returned by the last instance.

3 Exploiting Uniform Computations

In this section, we describe our main contribution, a static analysis of control-
flow divergence and its application in the context of whole-function vectorization.
The analysis is based on a value analysis presented by Karrenberg and Hack [12]
which identifies uniform computations.

3.1 Uniform Value Analysis

The uniform value analysis determines whether an operation produces the same
value for all instances of a kernel. If a value is not uniform, we call it vary-
ing. If a branch depends on a varying condition, we call it a varying branch.
Input arguments to OpenCL kernels are always uniform because all instances
are called with the same arguments. The OpenCL functions get_global_id()
and get_local_id() produce varying values if called with the SIMD dimension
as parameter. If called with another dimension, they produce uniform values
because we only vectorize one dimension (see Section 2.2).

3.2 Divergence Analysis

As described in the introduction, our goal is to retain as much control flow
during vectorization as possible. To exclude a certain code part from control-

flow to data-flow conversion, we must prove that the instances implemented by
the vector program never diverge in this code part. In general, this is a dynamic
property that can change for different kernel inputs. The following definition
describes an overapproximation of divergence which can be statically proven.

Definition 1 (Static Divergence) Let b be a block that can be reached from
another block v that ends with a varying branch. b is marked as divergent if

1. b is a direct successor of v, or

2. there exist two disjoint paths from v to b, or

3. b is an exit block of a loop which includes v, and there exist two disjoint
paths from v to b and from v to the loop’s latch £.2

Figure 5 illustrates these conditions, Figures 6 and 7 depict some more involved
examples.

Fig. 5. Illustration of the three possibilities for divergence of a block b (Definition 1).
Note that in the second case, b is neither required to post-dominate v, nor is v required
to dominate b.

Informally, the second condition means that in the kernel execution under
consideration, b can be reached by some instances from both edges that leave v.
Hence, b is subject to control-flow to data-flow conversion.

The third condition is required because loops behave differently in terms of
divergence: If b is a loop exit and v is inside the loop, there might be a path
from one edge of v to an exit block and another, disjoint path from the other
edge to a back edge. Even if all exit branches are uniform, this would still make
it possible that some instances are still active in the loop when an exit edge is
taken. Therefore, b is divergent under this condition.

We compute uniformity and divergence using a data-flow analysis. Both prop-
erties influence each other mutually: First, as can be seen from Definition 1,
divergence depends on uniformity. If a branch is labelled varying, control flow
diverges. Second, divergence also influences uniformity. Consider a ¢-function

2 We assume that every loop has a latch which is the only source of back edges in the
loop.

Fig. 6. Example CFGs showing our analysis results. Uniformity of conditional branches
is shown with a lowercase letter below the block, divergent blocks are shaded. Our
analysis determines that significant parts of these CFGs are non-divergent and therefore
do not have to be linearized (see Figure 10).

Fig. 7. More complex examples. In the left CFG, j is neither always executed by all
instances that were active in a nor is it only executed by instances that took the left
or right branch in a. Therefore, the linearized CFG has to make sure that j has to be
executed regardless of the branch decision in a. In the right CFG, i, j, and k are non-
divergent because none can be reached from both edges of the same varying branch.
However, linearization requires duplication (see Section 3.3).

over uniform arguments. If that ¢-function resides in a divergent block, the ¢’s
value is mot uniform itself, because not all instances enter the ¢’s block from the
same predecessor in every execution. However, if we can prove the ¢’s block non-
divergent, the ¢’s value is uniform, too. Hence, the data-flow analysis computes
divergence and uniformity together.

The analysis uses join (not meet) lattices and employs the common per-
spective that instructions reside on edges not nodes. Program points thus sit
between the instructions (see Figure 8). This has the advantage that the join
and the update of the flow facts are cleanly separated.

The analysis lattice uses two simple lattices for uniformity and divergence:

a | b

Nt A b
I8 mauw
7N\

Fig. 8. Left: Our analysis setup with separated join and update of flow facts. Right:
Classic setup with mixed join/update.

varying v d divergent
uniform u n non-divergent
U D

The analysis lattice itself is defined as
L:=PVxV)x(V->U)xD

We record in every flow fact a set A of control-flow edges, a mapping u from
variables to uniformity information, and information about divergence d of that
program point. The join is defined component-wise:

(A,u,d) U (A, d") = (AU A Ju Uy o/, Aw. (d(w) Up d'(w)))
For a program point z, the update function
(A, d") = [w]*(A, u,d), []F:L—L

is defined as follows. First, consider the divergence update which reflects Defini-
tion 1:

if Ip € pred(z). u(p) = v

if Ip1, pa € pred(x). divergedPaths 4(p1, p2)

if x € Ep, A divergedPaths 4(z,0r,)

otherwise

B o o Q

where Ej, is the set of program points behind the exits of a loop L and /j, is
the program point at the loop’s back edge. Further, pred(z) is the set of prede-
cessor program points of . The Information whether two paths are disjoint and
divergent is given by the helper function

divergedPaths 4 (p1,p2) = Jer, ey € A(p1) U A(p2). (er € A(p1) Vey & A(p2)).

divergedPaths uses the set A which captures information about edges leaving
blocks with varying branch conditions. The control-flow edge is inserted into A
if the branch of a block was detected varying by the analysis. To this end, every

branch instruction gets two extra program points (one for the true and one for
the false program point) on which transfer functions can be placed that add
the corresponding edges to A. For each branch node v, let v, and vy be these
program points. For some v, the update function for A is

A= AU {vg} fulw)=v
0 otherwise,

otherwise we define A’ = A.

Finally, the uniformity part provides information to the other two compo-
nents of the analysis. A common operation s = @(o1,...,0,) is uniform if all
operands o; are uniform. Thus, using f | z — y as an abbreviation for

Y ifw==a
Aw. .
f(w) otherwise,

the uniformity update for non-¢ instructions is given by:
uW=u|s— Llu(oi)
i

For ¢-functions, this does not hold. Even if all parameters of a ¢ are uniform,
the ¢ will not produce a uniform value if two instances can enter it via different
predecessors. Hence, to produce a uniform value, the ¢-function’s program point
has to be detected non-divergent.

=5 u if d(s) .:n/\|_|iu(01-) =u
v otherwise

We omit the proof of monotonicity due to space limitations.

3.3 Optimizations

In the following paragraphs we describe techniques to take advantage of the
results of the presented uniformity and divergence analyses.

Retaining Scalar Computations. The uniformity analysis allows us to pre-
vent vectorization of uniform values. The benefit of using uniform computations
is straightforward: register pressure is taken from the vector units and scalar
computations can be executed in parallel to the vector computations. Further-
more, if a uniform value is used by a varying instruction, the value is broadcast
to a vector beforehand. As a byproduct, our analysis computes the program
points where scalar values have to be broadcast to vector values. This is im-
portant because we observed that eager broadcasting often causes performance
degradation.

Retaining Control Flow. As discussed in the introduction, the divergence
analysis opens up the possibility to retain uniform control flow. In the following,
we describe an algorithm for CFG linearization which allows to exclude arbitrary,
non-divergent control-flow structures.

First, we build regions of divergent blocks using a depth-first search on the
CFG. While traversing, we create a new divergent region whenever we see a
varying branch and mark this region as active. If we encounter a block that
post-dominates all blocks in this region, we finish the region and set the active
region to the last unfinished one. Divergent blocks are always added to the active
region. Regions that overlap or have common entry or exit blocks are merged.

Next, each region is linearized recursively (inner regions before outer regions)
as follows: We first determine an order for the contained blocks by sorting them
topologically by data dependencies (linearized, inner regions are treated like one
block). Next, we schedule the blocks of the region by rewiring all edges that target
a divergent block. A block is scheduled after all its edges have been visited. The
new target of each edge is the first divergent block of the current region’s order
that has not yet been scheduled. Edges that target non-divergent blocks remain
untouched.

The reason behind creating schedules of the blocks and rewiring edges is that
no block of a divergent region must be skipped during execution because this
may violate the semantics of the original kernel.

Figure 9 illustrates an example where the non-divergent block e has a neigh-
bor d that is divergent and thus always has to be executed. If we linearize all
divergent blocks and retain the incoming and outgoing edges of e, we end up
with a graph where blocks b and d can be skipped (Figure 9(d)), although some
instances might want to take the path a — b — d — f — g. Dependencies are
maintained correctly by rewiring the edge e — f to e — b (Figure 9(e)).

Figure 10 shows linearizations of the examples of Figure 6. In the leftmost
CFG, only d, e, g, and 7 have to be linearized due to the varying branch in b.
Because only one path from a to h leads through a varying branch, h is non-
divergent. In the middle CFG, the inner loop, although being nested in a loop
with varying exit, does not require any mask updates or blending because all
active instances always leave the loop together. The rightmost CFG shows a case
where it is allowed to retain the uniform loop exit branch in c: there are only
uniform branches inside the loop, so either all or no active instance will leave
the loop at this exit. However, h must not be skipped because of instances that
might have left the loop earlier.

Linearization of patterns such as in the second graph of Figure 7 requires
additional logic. This is because there is no schedule where all edges leaving i,
J, and k can be rewired to a single block that has not yet been scheduled with-
out violating dependencies. One possibility to handle this is duplication of code,
another one is inserting conditional branches that depend on the previously ex-
ecuted divergent block. Due to space constraints we omit linearization examples
for Figure 7 and leave a more detailed discussion of this issue for future work.

[=H=HeHeH = Hel]

(a) Example CFG (b) Topological (c) Naive (d) Invalid (e) Valid
Order Linearization Linearization Linearization

Fig. 9. CFG linearization example. In the original CFG (a), e is non-divergent because
it can not be reached through different edges of varying branches. The topological
sorting that is used in this linearization is shown in (b). The linearization (d) is invalid
because it must not be possible to skip b and d. The graph (e) shows the correct
linearization, which is likely to have better runtime than the naive approach (c).

Reducing Mask Operations. During control-flow to data-flow conversion,
each block is assigned a mask that is updated at each varying branch (conjunc-
tion and negation) and at each join block (disjunction).

If a conditional branch is uniform however, we use the incoming mask of the
block for both outgoing edges instead of updating the mask with the comparison
result. This implies that on paths with only non-divergent blocks, all edges have
the same mask as the first block.

If our analysis found out that a block is always executed by all instances, the
mask is set to true. At the end of regions with a single entry and exit block, the
mask is reset to the one of the entry block. If a non-divergent block has multiple
incoming edges, we generate a ¢-operation instead of mask disjunctions. This is
because only one of the incoming paths may have been executed.

In the rightmost CFG of Figure 10, blocks ¢ and d can both use the entry
mask of block b instead of performing conjunction-operations with the (negated)
branch condition in b, and block f can use the same mask instead of the dis-
junction of both incoming masks.

Loops require special loop exit masks in order to store the information which
instances have left the loop through which exits [12]. However, if an exit block
is non-divergent, we omit its loop exit mask because it is equal to the active
mask. If all exit blocks are non-divergent no loop mask is required because all
instances that enter the loop will exit together through one of the exits.

Fig. 10. Valid linearizations of the CFGs shown in Figure 6.

Reducing Blend Operations. If control flow is linearized, ¢-operations in
blocks with multiple predecessors have to be transformed to select-operations
that conditionally blend together incoming values based on the active mask.

However, if a block with multiple incoming edges is non-divergent, we can
retain its ¢-operations. Blending in such a case is not necessary because only
one of the incoming paths may have been executed. For example, in the leftmost
CFG of Figure 10, the ¢’s in block h remain untouched.

If an edge is rewired, the ¢’s from the old target block have to be modified
(one direction will yield only dummy values that are later masked out) and
moved to the new target block of the edge. For example, the ¢’s in block f of
Figure 9 have to be moved to block b.

Loops require a blend operation for all values live across loop boundaries
before the back branch of the loop [12]. If our analysis proves the loop to only
exit to non-divergent blocks, we also do not require any blending because all
instances will iterate equally often.

Optimizing Operations with Side-Effects. Operations with side-effects
such as store operations and function calls have to be split up and each scalar
operation must not be executed unless the corresponding mask element is true.
If our analysis proves that a block is always executed by all instances, we prevent
generation of such expensive code because all mask elements will be true when
reaching the block.

Optimizing Loop Induction Variables. A more subtle optimization aims
at values that are independent of any input of the function: values related to
loop induction variables. Consider the Mandelbrot kernel in Figure 11. The exit
condition of the main loop is varying because one of the two comparisons depends
on varying values (z, y). Therefore, all values that are live across loop boundaries
also have to be considered varying because they may differ between instances
due to different loop trip counts. This means that iter—because it has a use

after the loop—and all its uses (the increment and the comparison) have to be
vectorized.

uint iter;

for(iter=0; (x2+y2 <= scaleSquare) && (iter < maxIter); ++iter) {
y =2 *x %y + y0;
x = x2 - y2 + x0;

X2 = xX*X;

y2 = y*y;
}
int tid = get_global_id (0);
image [tid] = 255%iter/maxIter;

Fig. 11. Main loop of the OpenCL Mandelbrot kernel.

However, we can perform the following optimization: We introduce an ad-
ditional vector variable that holds the “result” of iter which is updated after
every iteration of the loop and is also used to determine when to exit the loop.
The update is performed by a broadcast of iter (which remains scalar) followed
by blend operation. This allows us to perform all computations inside the same
loop iteration that only depend on input-independent or uniform values in scalar
registers.

In the Mandelbrot example, this means that the increment of iter and the
comparison iter < maxIter can remain scalar and maxIter does not require a
broadcast. We observed a speedup of over 400% when applying this optimization
(see Section 5). The reason for this is that the optimized operations are inside a
frequently executed loop. One required vector register less or more in this critical
part can affect performance significantly.

4 Related Work

Our SIMD vectorization technique stems from work of Allen [1] on the conversion
of control flow to data flow. In classic loop vectorization [2,5,23,6,17], the in-
nermost loop level is unrolled before combining isomorphic statements to vector
operations (“unroll-and-jam”), either for vector machines or SIMD instruction
sets. Target loops are usually restricted to either static iteration counts, specific
data-dependency schemes, or straight-line code. Ngo [16] was the first to de-
scribe “Outer-Loop Vectorization” (OLV) [18]. In OLV, outer loops are unrolled
to improve vectorization, e.g. due to longer trip counts of outer loops or better
memory access schemes. Whole-Function Vectorization (WFV) [12] applied a
scheme similar to OLV to data-parallel languages like OpenCL. By vectorizing
an entire function, the new kernel computes W instances of the scalar code in
parallel, effectively vectorizing the driver-level loop over the input data. Less
generic approaches have been applied to various domain-specific languages [7,
20,9,21,15].

The uniform value analysis was introduced as part of WFV. We are not aware
of other related work that attempts to classify data-parallel code into uniform
and varying instructions automatically. However, some data-parallel languages
like ISPC [21] or the RenderMan Shading Language [4] have explicit keywords
to enforce specific behavior where required. In languages like OpenCL [13] and
CUDA [19] this is not necessary because the semantics of the kernel are given
by the execution model.

The only prior work directly related to our divergence analysis that we are
aware of is a technique that employs “branches-on-superword-condition-code”
(BOSCCQC) introduced by Shin [22]. This technique reintroduces control flow into
vectorized code to exploit situations where the predicates (masks) for certain
parts of the code are entirely true or false at runtime. While this prevents
unnecessary execution of code, it suffers from some overhead for the dynamic test
and does not solve the problem of increased register pressure: the code still has
to account for situations where the predicate is not entirely true or false. Our
analysis can do better by providing the necessary information statically, which
allows to retain the original control flow that does not require any blending.
However, it is possible to benefit from both our optimizations and BOSCCs.
The next section will evaluate both approaches.

An increasing number of OpenCL drivers is being developed by different
software vendors for all kinds of platforms from GPUs to mobile devices. For
comparison purposes, the x86 CPU drivers by Intel [10] and AMD [3] are most
interesting. However, there is not much detail on the underlying implementa-
tions. Both drivers have in common that they build on LLVM and exploit all
available cores with some multi-threading scheme. The Intel driver also performs
SIMD vectorization similar to our implementation®. However, to our knowledge,
it lacks analyses to retain uniform computations and control flow, an important
source of performance (see Section 5).

Recently, The Portland Group released an x86 CPU driver for CUDA [26]
that also makes use of both multi-threading and whole-function vectorization,
but no implementation details are publicly available. MCUDA [25] is another
x86 CPU implementation of CUDA that introduced the first “thread loop”-
based synchronization scheme. Their approach uses loop fission of the thread
loop to remove barriers, which results in similar code as our approach if no bar-
riers are inside loops. In that scenario however, MCUDA generates additional,
artificial synchronization points at the loop header and before the back branch.
This can impose significant overhead due to additional loading and storing of live
variables. Jadskeldinen et al. [11] implemented a standalone OpenCL compiler
that generates customized code for FPGAs and also uses this synchronization
scheme. In contrast to our driver, they rely on the instruction-level parallelism
of the FPGA design by duplicating kernel code W times instead of performing
explicit SIMD vectorization. TwinPeaks [8] is an implementation of the OpenCL
APT that targets both CPUs and GPUs but does not perform aggressive code

3 We have no information about the AMD driver but suspect that no whole-function
vectorization is used due to the inferior performance.

OpenCL Kernel Performance (milliseconds)

Application Input Size Scalar Naive UniVal BOSCC UniCF Speedup
BitonicSort 1,048,576 1,649 549 519 518 519 1.00%
BlackScholes 16,777,216 2,743 713 672 672 672 1.00%
DCT 4,000? 732 1,100 857 857 411 2.09x
FastWalshTransform 134,217,728 9,852 13,317 13,450 13,451 13,458 1.00x
FloydWarshall 512 444 4,081 3,592 3,420 3,603 1.00%
Histogram 15,0002 1,575 1,703 1,454 1,469 1,266 1.15x
Mandelbrot 8,1922 4,136 8,114 1,724 1,727 1,725 1.00x
MatrixTranspose 12,000 2,295 2,378 1,599 1,599 1,600 1.00%
NBody 19,968 3,768 2,099 1,410 1,408 1,035 1.36%

Table 1. Median kernel execution times of our OpenCL driver in different configura-
tions for different applications (no multi-threading, 50 iterations). The row “speedup”
shows the effect of our divergence optimizations, comparing “UniCF” to “UniVal” (95%
confidence level).

transformations. Their synchronization scheme uses custom implementations of
setjmp()/longjmp () whereas our driver modifies the kernel code directly, stor-
ing only the live values instead of blindly saving registers. Clover [24] is an open
source OpenCL driver on top of Gallium3D which implements synchronization
with POSIX contexts. Both TwinPeaks and Clover do not employ WFV.

5 Experimental Evaluation

Our OpenCL driver is based on the LLVM compiler framework [14] and the
AMD APP SDK [3]. We did not attempt to implement the full OpenCL 1.1
API rather than a sufficiently complete fraction to run benchmarks from the
APP SDK. If necessary, the benchmarks were modified to only use scalar values
instead of the OpenCL built-in vectors to allow for automatic vectorization. All
experiments were conducted on a Core 2 Quad at 2.8 GHz with 4 GB of RAM
running Windows 7. The vector instruction set is Intel’s SSE 4.1, yielding a
SIMD width of four 32 bit values. The machine ran in 64 bit mode, thus 16
vector registers were available.

We report kernel execution times of our driver in different configurations and
compare to Intel’s [10] and AMD’s [3] CPU driver. Each measurement shows the
median of 50 individual runs per configuration per benchmark without warm-up.
Although the machine was not rebooted after every run, the numbers reported
here are as realistic as possible for one cold-started, arbitrary run of the applica-
tion. In addition, we conducted tests that ensure significance of our results using
the “SpeedUp Test” [27].

5.1 Benchmarks

Table 1 shows the runtime performance of a diverse set of applications in differ-
ent configurations: The first configuration (“scalar”) performs no vectorization,

OpenCL Kernel Performance (milliseconds)

Application VecOCL Intel AMD Speedup vs Intel
BitonicSort 164 1,170 47,271 7.13x
BlackScholes 241 329 717 1.37x%
DCT 201 350 693 1.74x
FastWalshTransform 4,944 6,661 8,601 1.35%
FloydWarshall 934(148%) 525% 471 0.56x (3.55%x*)
Histogram 387 1,178 527 3.07x
Mandelbrot 632 1,930 29,045 3.05x%
MatrixTranspose 1,072 2,933 10,748 2.74x
NBody 343 676 1,253 1.97x

Table 2. Median kernel execution times of our OpenCL driver (VecOCL, vectorized
and multi-threaded) compared to the proprietary drivers of Intel and AMD. Values
marked with an asterisk are execution times without WFV: for FloydWarshall, the
Intel driver does not perform vectorization. We obtain an average speedup factor of
the median of over 2.5 against the Intel driver at a confidence level of 95%.

so the kernel is executed sequentially. The “naive” configuration performs vector-
ization without retaining uniform values and with complete linearization. The
“UniVal” configuration linearizes all control flow, but retains uniform values
where possible. The “UniCF” configuration additionally employs our analysis,
leaving non-divergent control flow intact. “BOSCC” refers to the “UniVal” con-
figuration with additional insertion of BOSCCs.

The overall observation is that performance increases with the addition of
analyses and optimizations (from left to right in Table 1). Retaining uniform
values proves to be effective for all of the benchmarks with an average speedup
factor of 1.21. Retaining non-divergent control flow helps most in presence of
loops with non-divergent exits as in DCT, Histogram, and NBody. These bench-
marks profit from the reduced overhead of mask and blend operations and re-
tained control flow, which results in speedup factors of 2.09, 1.15, and 1.36. As
expected, there is no effect on benchmarks that do not have any non-divergent
control flow, such as BitonicSort, BlackScholes, or MatrixTranspose.

Table 1 also shows numbers of a configuration that does not use our diver-
gence analysis but inserts BOSCCs after linearization. It can be observed that
this technique does not impact performance largely (only FloydWarshall runs
5% faster) in contrast to the configuration which makes use of our divergence
analysis. This is mostly due to the fact that BOSCCs do not help in presence
of loops, which are the hot spots in most of the benchmarks: a loop always has
to be executed as long as any instance is still iterating. Introducing BOSCCs
does not help here, whereas our optimizations can remove blend and mask op-
erations if all loop exits are non-divergent. When combining all techniques, we
match the performance of the “BOSCC”-configuration for FloydWarshall, all
other benchmark results remain unchanged from “UniCF”.

The Mandelbrot benchmark additionally profits from the special optimiza-
tion described in Section 3, which resulted in a reduction of the kernel execution
time from 8.1 seconds to 1.8.

It is also important to note that naive vectorization is often inferior to scalar
execution (DCT, Histogram, and MatrixTranspose), which highlights the impor-
tance of additional optimizations. Despite our efforts, there are still benchmarks
that are not suited for vectorization such as FastWalshTransform and Floyd-
Warshall, which are dominated by random memory accesses.

For a fair comparison against Intel’s and AMD’s drivers we implemented a
naive, unoptimized multi-threading scheme that uses OpenMP. Table 2 shows
that our custom driver significantly outperforms both drivers in all test-cases
(statistically significant with a confidence level of 95%).

6 Conclusion

Whole-function vectorization of kernels is the technique of choice to achieve
maximum performance of data-parallel languages on CPUs. However, naively
vectorizing all code can greatly limit the benefits due to the possibly large over-
head of control-flow to data-flow conversion. We presented key techniques to
reduce this overhead based on the analysis of divergent control flow.

In addition, we described code generation techniques to reduce the overhead
that is inherent to data-parallel languages like OpenCL and CUDA: we inte-
grated parts of the driver code into the kernel and used a novel synchronization-
scheme based on continuations to enable aggressive optimizations.

Our techniques have proven to be successful on a variety of different bench-
marks, significantly outperforming proprietary drivers by Intel and AMD.

We are aware of the fact that we did not provide a formal proof of our
transformations. However, proving correctness requires a formal semantics of a
data-parallel language such as OpenCL which has not been developed yet. Such
a semantics would also enable a more formal definition of divergence. We leave
this for future work.

Acknowledgement.

This work is part of the ECOUSS project and has been funded by the German
Ministry for Education and Science (BMBF) and the Intel Visual Computing
Institute Saarbriicken. The authors would like to thank Christoph Mallon and
Daniel Grund for insightful discussions about control-flow divergence. Further-
more, we thank Roland Leia and the anonymous reviewers for their helpful
comments and remarks.

References

1. Allen, J.R., Kennedy, K., Porterfield, C., Warren, J.: Conversion of control depen-
dence to data dependence. In: POPL. pp. 177-189. ACM (1983)

2. Allen, R., Kennedy, K.: Automatic translation of FORTRAN programs to vector
form. ACM Trans. Program. Lang. Syst. 9(4), 491-542 (1987)

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.
20.

21.
22.

23.

24.

25.

26.
27.

AMD: AMD APP SDK v2.5 (March 2011)

Apodaca, A., Mantle, M.: RenderMan: Pursuing the Future of Graphics. IEEE
Computer Graphics & Applications 10(4), 44-49 (July 1990)

Cheong, G., Lam, M.: An Optimizer for Multimedia Instruction Sets. In: Second
SUIF Compiler Workshop (1997)

Darte, A., Robert, Y., Vivien, F.: Scheduling and Automatic Parallelization.
Birkhauser Boston (2000)

Fritz, N., Lucas, P., Slusallek, P.: CGiS, a New Language for Data-Parallel GPU
Programming. In: VMV. pp. 241-248 (2004)

Gummaraju, J., Morichetti, L., Houston, M., Sander, B., Gaster, B.R., Zheng, B.:
Twin peaks: a software platform for heterogeneous computing on general-purpose
and graphics processors. In: PACT. pp. 205-216. ACM, New York, NY, USA (2010)
Hormati, A.H., Choi, Y., Woh, M., Kudlur, M., Rabbah, R., Mudge, T., Mahlke, S.:
Macross: macro-simdization of streaming applications. In: ASPLOS. pp. 285-296.
ACM, New York, NY, USA (2010)

Intel: Intel OpenCL SDK 1.1 (June 2011)

Jaskelainen, P.O., de La Lama, C.S., Huerta, P., Takala, J.: OpenCL-based design
methodology for application-specific processors. In: SAMOS’10. pp. 223-230 (July
2010)

Karrenberg, R., Hack, S.: Whole Function Vectorization. In: CGO. pp. 141-150
(2011)

Khronos Group: OpenCL 1.1 Specification (June 2011)

Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: CGO (Mar 2004)

Newburn, C.J., So, B., Liu, Z., McCool, M.D., Ghuloum, A.M., Toit, S.D., Wang,
Z.G., Du, Z., Chen, Y., Wu, G., Guo, P., Liu, Z., Zhang, D.: Intel’s Array Building
Blocks: A retargetable, dynamic compiler and embedded language. In: CGO. pp.
224-235 (2011)

Ngo, V.: Parallel loop transformation techniques for vector-based multiprocessor
systems. Ph.D. thesis, University of Minnesota-Twin Cities (May 1994)

Nuzman, D., Henderson, R.: Multi-platform auto-vectorization. In: CGO. pp. 281—
294 (2006)

Nuzman, D., Zaks, A.: Outer-loop vectorization: revisited for short simd architec-
tures. In: PACT. pp. 2-11. ACM (2008)

NVIDIA: CUDA Programming Guide (2009)

Parker, S., et al.: RT'SL: A Ray Tracing Shading Language. IEEE Symposium on
Interactive Ray Tracing (2007)

Pharr, M.: Intel SPMD Program Compiler (June 2011)

Shin, J.: Introducing Control Flow into Vectorized Code. In: PACT. pp. 280-291.
IEEE Computer Society (2007)

Sreraman, N., Govindarajan, R.: A vectorizing compiler for multimedia extensions.
Int. J. Parallel Program. 28(4), 363-400 (2000)

Steckelmacher, D.: An OpenCL State Tracker for Gallium based on Clover.
http://people.freedesktop.org/ “steckdenis/clover (August 2011)

Stratton, J.A., Stone, S.S., Hwu, W.M.W.: Languages and compilers for parallel
computing. chap. MCUDA: An Efficient Implementation of CUDA Kernels for
Multi-core CPUs, pp. 16-30. Springer-Verlag, Berlin, Heidelberg (2008)

The Portland Group, Inc.: PGI CUDA-x86 (June 2011)

Touati, S.A.A., Worms, J., Briais, S.: The Speedup Test. Rapport de recherche
(2010), http://hal.inria.fr/inria-00443839/en/

