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Abstract—The worst-case execution time (WCET) analysis for multi-
core processors is a challenge. An explicit consideration of all possible
interference effects caused by the shared resources is in many cases
combinatorially infeasible. Therefore, approximations are used to reduce
this complexity. Current approaches to WCET analysis for multi-core
processors are specific to particular ways of approximating the underlying
system. Furthermore they are only applicable to rather restricted classes
of processors. We identified a common methodology behind existing
approaches and formalized it in a unified meta approach. Our meta
approach is not restricted to a particular way of approximation. It allows
to improve the precision of the obtained WCET bounds by incorporating
properties of the system under consideration.

I. INTRODUCTION

Multi-core processors consist of several processor cores, which
share common resources such as buses or caches. Their use can
reduce the weight, the energy consumption and the production costs
of computer systems. Hence, they are likely to also be used for
timing-critical applications in the long run [1].

However, resource sharing can have a significant impact on the
overall performance of a system [2] because several cores compete
for the shared resources. This effect is commonly referred to as shared
resource interference.

For a timing-critical application it is important that the time needed
to deliver the results of its calculations does not exceed a deadline
dictated by the physical environment. A time-critical application may
consist of several programs that interact. Knowledge about the worst-
case execution time (WCET) [3] of each such program allows to
verify the timeliness of the overall application. It is safe to replace the
WCET of a program by an upper bound on its execution times in this
verification step. However, the timeliness of an application can often
only be verified if these upper bounds are relatively tight. WCET
analyses can be used to derive these upper bounds on the execution
times of programs. The execution times of a program depend heavily
on possible execution behaviors at the microarchitectural level of
the processor that executes the program. From now on, we just use
behaviors to refer to the execution behaviors at the microarchitectural
level of a processor.

Very simple processors allow for a precise WCET analysis by
instruction counting or time measurement of a single execution run
of the system [4]. Modern processors, however, are too complex to
exhaustively simulate or measure the execution times of all possible
behaviors. WCET analyses for those processors need to approximate
some of the microarchitectural details in order to reduce the inherent
complexity [5], [6]. Approximation often comes at the cost of a less
tight WCET bound.

The WCET analysis of programs executed on multi-core processors
is a special challenge. It needs to take into account all possible
interference effects due to resource sharing. A precise consideration
of all such effects might in many cases require an exhaustive
enumeration of all possible interleavings of accesses to the shared
resources by the different processor cores. Such a consideration can
be looked upon as combinatorially too complex.

Current approaches to WCET analysis for multi-core proces-
sors [7], [8], [9], [10], [11], [12], [13] try to find a level of approx-
imation that avoids this complexity without sacrificing precision too
much. Unfortunately, the existing approaches are only applicable to
programs executed on very restricted classes of processors. Further-
more, each approach is specific to a particular way of approximating
the behavior of the considered system.

In our opinion, a first step toward overcoming these limitations
is to identify the common ideas of existing approaches. This will
help in designing future approaches in a more generic and uniform
way. Our contribution is a meta approach that is not restricted to a
particular way of approximation. It allows to improve the precision of
the obtained WCET bounds by incorporating properties of the system
under consideration.

II. RELATED WORK

The existing approaches to WCET analysis for multi-core proces-
sors are derived in formally quite different ways. Yet, the different
approaches loosely follow a common two-step methodology.

As a common starting point, all considered approaches assume a
level of approximation that does not restrict the amount of shared re-
source interference. Schranzhofer et al. represent a program executed
on a particular core as a sequence of superblocks [7], [8], [9]. A
superblock only bounds the number of processor cycles (not blocked
at the bus) and the number of bus accesses for a part of the program.
Liang et al. assume upper and lower bounds on the number of
processor cycles per basic block [10]. These bounds ignore possible
penalty cycles induced by the memory hierarchy. The approach of
Chattopadhyay et al. [11] bounds the points in time that each program
instruction can spend in each pipeline stage of the processor core.

Furthermore, all approaches assume properties of the concrete
system under analysis, that provide bounds on the amount of shared
resource interference. The approaches considering a shared bus
provide bounds on the number of blocked cycles. The intuition behind
the bounds stems from the protocol used for bus arbitration (Time
Division Multiple Access [7], [11], Round-Robin [12], [13], First-
Come-First-Served [12], [8]). The approaches considering a shared
cache exploit system properties that guarantee that certain accesses
to the shared cache cannot miss [10], [11]. All approaches use these
bounds on the shared resource interference to exclude some of the
spurious execution behaviors introduced by approximation.

Our meta approach depicts this common methodology in a formal
and generic way.

III. CONCRETE EXECUTION BEHAVIOR AND TIME

We consider a multi-core processor consisting of the set Cores of
processor cores. For simplicity, we assume that each core only runs
one program and that each program may at most be executed once
per system run. In the following, we use the term system to refer to
the combination of the hardware containing the multi-core processor
and the software executed on it.
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The system may exhibit different execution behaviors depending on
its initial state, external input parameters and clock drift effects. Let
Traces be the set of all execution behaviors of the system. Its superset
Universe contains the execution behaviors of arbitrary systems.

Universe ⊇ Traces

Each core C (or the program executed on it) can be assigned an
execution time per execution behavior. This time is given by the
function etC .

etC : Universe→ N ∪ {∞}
The WCET of a core C is the maximal execution time for C over

all execution behaviors of the considered system.

WCETC = max
t∈Traces

etC(t) (1)

IV. APPROXIMATION BY ABSTRACT TRACES

Modern processors usually exhibit too many execution behaviors
to allow for an exhaustive consideration of all of them. The set Traces
is simply too large. Therefore, it is mandatory to introduce some kind
of approximation. The goal is to not have to argue separately about
each concrete execution behavior.

In our view, an abstract model is given by the tuple (T̂races, γtrace).
T̂races is the set of abstract traces of the model. The function γtrace

maps those abstract traces to subsets of the universe of execution
behaviors. Please note that P(Universe) denotes the power set of
this universe of execution behaviors.

γtrace : T̂races→ P(Universe)

We say that an abstract model (T̂races, γtrace) is an overapproxi-
mation of Traces iff:

⋃

t̂∈T̂races

γtrace(t̂) ⊇ Traces (2)

We assume that for each core C there is an upper bound on its
execution times per abstract trace. This bound shall be given by UBetC .

UBetC : T̂races→ N ∪ {∞}
∀t̂ ∈ T̂races : UBetC(t̂) ≥ max

t∈γtrace(t̂)
etC(t) (3)

From (2) and (3) it follows that the abstract model provides an
upper bound to the WCET as defined in (1) by:

max
t̂∈T̂races

UBetC(t̂) ≥ WCETC (4)

From now on we only consider abstract models that are overap-
proximations of Traces.

A sound abstract model for a multi-core processor can be derived
in a similar way as for a single-core processor by only focussing
on one core. This will likely result in very conservative assumptions
about the behavior of this core when accessing shared resources as
the behavior of shared resources and concurrent cores is not explicitly
considered. The baseline approximations of the approaches discussed
in Section II follow this paradigm.

V. INFEASIBLE ABSTRACT TRACES

The method used to obtain the set of abstract traces (e.g. static
analysis) might introduce imprecision. Therefore, there may be ab-
stract traces that only describe spurious execution behavior. We call
them infeasible abstract traces.

Înfeas = {t̂ | t̂ ∈ T̂races ∧ γtrace(t̂) ∩ Traces = ∅} (5)

Correspondingly, we refer to T̂races \ Înfeas as the set of feasible
abstract traces. In fact, it follows from (5) that the set of feasible
abstract traces is an overapproximation of Traces.

⋃

t̂∈T̂races\Înfeas

γtrace(t̂) ⊇ Traces (6)

Based on an abstract model (T̂races, γtrace), which is an overap-
proximation of Traces, we define a set Deriv

(T̂races,γtrace)
of further

abstract models as follows:
Deriv

(T̂races,γtrace)
=

{(T̂races′, γtrace) | T̂races ⊇ T̂races′ ⊇ T̂races \ Înfeas}
(7)

Consider an element (T̂races′, γtrace) of set Deriv
(T̂races,γtrace)

. Ac-

cording to (7), T̂races′ is a subset of T̂races that contains at least
all feasible abstract traces of T̂races. It follows from (6) and (7) that
each element of Deriv

(T̂races,γtrace)
is an overapproximation of Traces.

∀(T̂races′, γtrace) ∈ Deriv
(T̂races,γtrace)

:
⋃

t̂∈T̂races′

γtrace(t̂) ⊇ Traces (8)

In a similar way as (2) and (3) imply (4), it is a consequence of
(8) and (3) that we can calculate an upper bound to the WCET based
on any member of Deriv

(T̂races,γtrace)
:

∀(T̂races′, γtrace) ∈ Deriv
(T̂races,γtrace)

:

max
t̂∈T̂races′

UBetC(t̂) ≥ WCETC
(9)

As a consequence, we can ignore an arbitrarily chosen set of
infeasible abstract traces in an abstract model. A WCET bound based
on the remaining abstract traces is still guaranteed to be sound.

The calculation of WCET bounds is based on upper bounds on
the execution times per abstract trace (3). If an abstract model makes
conservative assumptions about the behavior at the shared resources,
some infeasible abstract traces might assume an amount of shared
resource interference that exceeds the maximum possible amount for
the concrete system. As upper bounds on the execution times of such
infeasible abstract traces are likely to be very pessimistic, ignoring
those abstract traces—as in (9)—might improve the tightness of the
resulting WCET bound significantly.

However, it depends heavily on the abstract model (T̂races, γtrace)
and the upper bounds on the execution times per abstract trace if
the WCET bound can be tightened by leaving out some infeasible
abstract traces. Consider the particular case that the calculation of the
WCET bound is dominated by an infeasible abstract trace. Further
assume that each feasible abstract trace has an upper bound on its
execution times that is strictly smaller than the calculated WCET
bound. Then we can obtain a strictly smaller WCET bound by basing
its calculation only on the feasible abstract traces. In fact, this proves
that the precision of the WCET bound can be improved by pruning
infeasible abstract traces.

VI. SYSTEM PROPERTIES

We assume properties to be boolean predicates on execution be-
haviors. System properties are properties that hold for each execution
behavior of a concrete system. The existence of a bound on the shared
resource interference may for example be a system property. Let Prop
be a set of properties of the system under consideration:

Prop = {P1, . . . , P#Prop}
∀t ∈ Traces : ∀Pi ∈ Prop : Pi(t) (10)
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We want to use these system properties to detect some infeasible
abstract traces. But so far, they only argue about execution behaviors
of the concrete system. Therefore, we need to lift them to abstract
traces. This means, we need to find P̂i such that:

∀t̂ ∈ T̂races :

[ ∃t ∈ γtrace(t̂) : Pi(t) ]⇒ P̂i(t̂)
(11)

The intuition behind that requirement gets more clear if we have
a look at what it means if P̂i does not hold for an abstract trace
t̂ ∈ T̂races:

¬P̂i(t̂)
⇒
(11)
∀t ∈ γtrace(t̂) : ¬Pi(t)

⇒
(10)
γtrace(t̂) ∩ Traces = ∅

⇔
(5)
t̂ ∈ Înfeas

(12)

So if a lifted property does not hold for an abstract trace, this
means that the abstract trace is infeasible. From now on, the lifted
version of any system property shall be identified by the name of the
system property with an additional hat on top.

VII. PROPERTY LIFTING EXAMPLE

The following example will illustrate how we can find a P̂i(t̂)
satisfying (11) without using γtrace(t̂) directly, which is mandatory
for an efficient use of an abstract model.

Assume that we have an upper bound on the number of bus
accesses performed by a particular processor core C per abstract
trace.

∀t̂ ∈ T̂races :

∀t ∈ γtrace(t̂) :
UB#accessesC(t̂) ≥ #accessesC(t)

(a)

We only use γtrace to argue about the soundness of the bounds. But
we assume that each bound is given by a preceding analysis in the
same way as the corresponding abstract trace is.

In addition, we assume to have a lower bound on the number of
cycles that core C is blocked at a shared bus per abstract trace.

∀t̂ ∈ T̂races :

∀t ∈ γtrace(t̂) :
LB#blockedCyclesC(t̂) ≤ #blockedCyclesC(t)

(b)

Now assume that the concrete system we consider uses a Round-
Robin policy to arbitrate its shared bus. Therefore, all its execution
behaviors shall fulfill the property Prr:

Prr(t)⇔[#blockedCyclesC(t)

≤ #accessesC(t) · (#Cores− 1)

· maxCyclesPerAccess ]

(c)

The intuition behind this property (implicitly assumed in [12]) is
that with Round-Robin arbitration, each concurrent core (there are
#Cores − 1 of them) can at most perform one access to the bus
before an access of core C is granted. Together with an upper bound
on the number of cycles that a granted bus access can at most take
to complete on the concrete system, we arrive at an upper bound on
the number of cycles that any access of core C can be blocked at the
bus. Knowledge about how many accesses to the bus are performed
by core C allows us to bound the overall amount of bus blocking
experienced by core C in a particular execution behavior.

We can safely lift Prr to abstract traces in a way that satisfies (11)
by applying (a) and (b):

∀t̂ ∈ T̂races :

∃t ∈ γtrace(t̂) : Prr(t)

⇔
(c)
∃t ∈ γtrace(t̂) :

#blockedCyclesC(t)

≤ #accessesC(t) · (#Cores− 1)

· maxCyclesPerAccess

⇒
(a)
(b)

LB#blockedCyclesC(t̂)

≤ UB#accessesC(t̂) · (#Cores− 1)

· maxCyclesPerAccess

⇔: P̂rr(t̂)

(d)

P̂rr as defined in (d) clearly satisfies the soundness criterion (11) for
lifted properties. According to (12) any abstract trace t̂ with ¬P̂rr(t̂)
can safely be considered as infeasible.

VIII. IMPROVING THE APPROXIMATION

We define a compound property P̂ for abstract traces to be
the conjunction over the lifted versions of the considered system
properties.

∀t̂ ∈ T̂races :

P̂ (t̂)⇔ ∀Pi ∈ Prop : P̂i(t̂)
(13)

If P̂ does not hold for an abstract trace t̂ then this means that t̂ is
infeasible:

¬P̂ (t̂)

⇔
(13)
∃Pi ∈ Prop : ¬P̂i(t̂)

⇒
(12)
t̂ ∈ Înfeas

(14)

We can use P̂ to define an alternative set ̂LessTraces of abstract
traces based on T̂races:

̂LessTraces = {t̂ | t̂ ∈ T̂races ∧ P̂ (t̂)} (15)

̂LessTraces is the subset of abstract traces in T̂races that cannot be
classified as infeasible by any of the P̂i. It follows from (7), (14) and
(15) that ( ̂LessTraces, γtrace) is a member of Deriv

(T̂races,γtrace)
.

( ̂LessTraces, γtrace) ∈ Deriv
(T̂races,γtrace)

(16)

As a consequence of (9) and (16), we can derive a sound WCET
bound from ( ̂LessTraces, γtrace):

max
t̂∈ ̂LessTraces

UBetC(t̂) ≥ WCETC (17)

( ̂LessTraces, γtrace) can improve the precision, as ̂LessTraces po-
tentially prunes some of the infeasible abstract traces still included
in T̂races. In that context, (T̂races, γtrace) is referred to as baseline
abstract model as it is the starting point for further improvements of
precision.
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IX. REDUCING THE SIMPLIFYING ASSUMPTIONS

So far, we assume that each core only runs one program and that
each program may at most be executed once per system run. Please
note that these restrictions are not inherent to our meta approach.
They are ment to facilitate the focus on the essential ideas.

Our meta approach can easily be extended to support several
programs per processor core by introducing a set Programs of
program identifiers. Such an extension will assume the existence of
etProg and UBetProg for each program Prog ∈ Programs. We define the
WCET of program Prog as follows:

WCETProg = max
t∈Traces

etProg(t)

It is straightforward to derive an upper bound to this WCET based
on an abstract model that is an overapproximation of the considered
system’s behaviors:

max
t̂∈T̂races

UBetProg(t̂) ≥ WCETProg

In case a program Prog can be executed more than once per system
run, it is no longer possible to assign a single execution time per
program to each execution behavior. Therefore, we use the helper
function runsProg to extract the different execution runs of Prog from
an execution behavior. In this context, etProg assigns an execution time
to each execution run of Prog. An extended definition of the WCET
of Prog incorporates the execution runs of Prog:

WCETProg = max
t∈Traces

max
run∈runsProg(t)

etProg(run)

However, the previous definition of a WCET bound for Prog can
anyway be reused provided that UBetProg fulfills the following criterion:

∀t̂ ∈ T̂races :
UBetProg(t̂) ≥ max

t∈γtrace(t̂)
max

run∈runsProg(t)
etProg(run)

X. CONCEPTUAL APPROACH AND GENERALITY

It should be noticed that we describe a conceptual approach.
Implementations do not necessarily have to stick to its two-step
character of first accumulating the set T̂races and then sorting out
provably infeasible abstract traces.

Note that we did not restrict the form or structure of abstract traces
by any means. Therefore, we expect that our meta approach can
be mapped to the different ways of approximation used in WCET
analyses.

Furthermore, the use of our meta approach is by no means
restricted to a scenario of WCET analysis for multi-core processors.
Whenever there exists an abstract model that provides an overap-
proximation of a system’s behavior, our meta approach can serve to
further improve the precision by additional properties of the system.

XI. FUTURE WORK

We plan to instantiate our meta approach for the aiT WCET
analyzer1. In that way, we intend to come up with an overall approach
that supports a wide range of complex processor core features.

In addition to the instantiation of the meta approach for a powerful
baseline abstraction, it will be crucial to find a reasonable set of
system properties for each supported processor. Those properties
have to bound the shared resource interference in a way such that
sufficiently tight WCET bounds can be obtained.

Consider system properties that relate the behavior of one processor
core to that of other cores. Such properties are typical for systems that

1http://www.absint.com/ait

do not provide performance isolation between their cores [12], [8].
If an abstract model only focuses on one processor core, then it has
to assume arbitrary spurious behaviors for the other cores. The lifted
version of a property relating the behavior of the focused core to that
of others would have to pessimistically assume the other cores to
behave in a way that the property always holds. Therefore, our meta
approach currently only profits from such properties if it is used
in combination with a baseline abstract model that argues in detail
about several processor cores at the same time. But abstract models
that argue in detail about several processor cores can be seen as
combinatorially too complex. A goal of future work will be to allow
for the use of baseline abstract models that focus on one processor
core, but that still enable us to incorporate sound assumptions about
the behavior of concurrent processor cores.

XII. CONCLUSION

We presented a conceptual meta approach to WCET analysis for
multi-core processors. It points out a common methodology behind
previous approaches. Yet, it does not depend on a particular way
of approximating the system under consideration. Bounds on the
shared resource interference of the concrete system can uniformly be
incorporated to improve the precision of the obtained WCET bound.
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